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Abstract We present a hierarchical modulation coherent communication protocol, which
simultaneously achieves classical optical communication and continuous-variable quantum
key distribution. Our hierarchical modulation scheme consists of a quadrature phase-shifting
keying modulation for classical communication and a four-state discrete modulation for
continuous-variable quantum key distribution. The simulation results based on practical
parameters show that it is feasible to transmit both quantum information and classical
information on a single carrier. We obtained a secure key rate of 10−3 bits/pulse to 10−1

bits/pulse within 40 kilometers, and in the meantime the maximum bit error rate for classical
information is about 10−7. Because continuous-variable quantum key distribution protocol
is compatible with standard telecommunication technology, we think our hierarchical mod-
ulation scheme can be used to upgrade the digital communication systems to extend system
function in the future.

Keywords Quantum key distribution · Hierarchical modulation · Simultaneous
transmission · Coherent state

1 Introduction

Quantum key distribution (QKD) is one of the most practical and inspiring applications of
quantum information. It allows two remote parties to establish a secret key, whose security
is guaranteed by the laws of quantum mechanics [1, 2]. QKD has been thoroughly studied
both in theory and in practice over the past thirty years [3]. Indeed, some QKD systems
have begun to be applied in practice.
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Continuous-variable QKD (CVQKD) protocol with Gaussian modulation, in which the
continuous information modulated by Gaussian distribution are encoded on the quadratures
of a coherent state, was proposed as a feasible method in practice [4, 5]. CVQKD proto-
col using Gaussian modulation has the maximum mutual information between Alice and
Bob over Gaussian channel. And it has been demonstrated to be unconditionally secure
against collective attacks [6] and coherent attacks [7] in the asymptotic limit, which are
the most general attacks allowed by quantum mechanics. Recently, the composable secu-
rity of CVQKD with coherent states has been proved in Ref. [8] including the finite-size
effects. However, the main problem of CVQKD system based on Gaussian modulation is
poor performance at present. The reconciliation efficiency is low when CVQKD protocol
with Gaussian modulation works at low signal-to-noise ratio(SNR),thus severely limiting
the key transmission distance. Typically, the practicable transmission distance of CVQKD
protocol based on Gaussian modulation is within 50 kilometers equivalent to the distance of
metropolitan area network [9]. So CVQKD protocol with discrete modulation was proposed
to improve the system performance [10]. Its ability to obtain a high reconciliation effi-
ciency conditioned on a low SNR makes it an alternative to Gaussian modulation protocol
to achieve long-distance transmission. Moreover, one advantage of the discrete modulation
protocol over the continuous modulation protocol is its low complexity of reconciliation
procedure.

Whereas the CVQKD system using modern transmission techniques and devices is
compatible with current coherent light communication network [11], in this paper, we
demonstrate a novel protocol which allows classical communication and CVQKD with dis-
crete modulation to be conducted simultaneously. The protocol is achieved by a hierarchical
modulation scheme. The first layer constellation carries classical information, which is a
classical coherent communication scheme using quadrature phase-shifting keying (QPSK)
modulation. The second layer of the constellation carries quantum key information. Our
simultaneous transmission protocol using hierarchical modulation scheme provides a differ-
ent level of protection according to the degree of importance of information. The protocol
can be used to upgrade an existing digital broadcast system in the future, which will expand
the system functions and meet the requirements of multi network convergence.

In recent years, the simultaneous transmission schemes have received great attention. R.
Kumar et al use the method of frequency division multiplexing to achieve the coexistence
of continuous-variable QKD with classical channels in [12]. In Qi’s scheme, the classical
information is encoded on the displacements of QKD signals [13]. Different from the above
schemes, our scheme uses discrete modulation in CVQKD, which is simpler and more effi-
cient than Gaussian modulation. In addition, we use a high-order modulation format to
transmit classical information in the hierarchical modulation scheme.

2 Details of New Protocol

The protocol we propose runs as follows.
Alice prepares a coherent state, on which the classical information mA and quan-

tum key information nA are orderly encoded. The coherent state can be expressed by
|βei(2mA+1)π/4 + αei(2nA+1)π/4〉, mA ∈ {0, 1, 2, 3} , nA ∈ {0, 1, 2, 3}, as shown in
Fig. 1. Note that the classical information mA can be mapped into classical bits ab ∈
{00, 10, 11, 01}. The amplitude α and β, which are both real numbers, are chosen to opti-
mize the performance of system. Alice sends the coherent state to Bob via a classical
channel.
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(a) (b)

Fig. 1 Diagrammatic sketch of hierarchical modulation scheme. α and β are the amplitude of the signal
field. a β is the modulation amplitude of the first layer constellation and α is the modulation amplitude of the
second layer constellation. b The constellation schematic of four-state CVQKD protocol after demodulating
the first layer information

When Bob receives the modulated coherent state, he firstly measures position q̂ and
momentum p̂ of coherent state simultaneously by heterodyne detection to get the classical
information. That is, if the measurement results are q̂m > 0 and p̂m < 0, then the classical
information bits ab are assigned as 01. After determining the classical information of the
first layer constellation, Bob adjusts and displaces the measurement results to obtain the
secure quantum key as follows.

q̂k = q̂m√
ηT

− (−1)a
β√
2
. (1)

p̂k = p̂m√
ηT

− (−1)b
β√
2
. (2)

Where T is the transmittance of the quantum channel and η is the detection efficiency of
heterodyne detector. The coherent state becomes |αei(2nA+1)π/4〉 by eliminating the classical
information, as shown in Fig. 1. Next, we can get the raw quantum key through analysis
similar to the traditional CVQKD protocol with discrete modulation [10]. If the values of
q̂k and p̂k are greater than zero, then Bob determines that the quantum key information nA

is 0. Finally, Bob gets the secure key by the quantum key postprocessing including error
reconciliation, parameter estimation and privacy amplification [14, 15].

Because classical information and quantum information interfere with each other in the
hierarchical modulation system, the first layer QPSK modulation system operates at a high
noise level. In order to analyze the bit error rate of the first layer classical communication
system, we define λ as the ratio of quantum signal intensity α and classical signal intensity β.

λ = α

β
. (3)

λ is an important parameter to characterize the hierarchical modulation system. If λ = 0,
the whole system is a classical QPSK modulation system, transmitting only the classical
information. When λ is extremely small, the four coherent states in each quadrant of the
phase space form a “cloud”. The variation among the coherent states in a cloud has the
same effect of white noise on the first layer QPSK modulation system. Under this condition,
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the bit error rate of the classical communication system is low and the CVQKD system
based on four-state modulation is secure in our hierarchical modulation scheme. Given that
the quantum signal amplitude α should be extremely small, we are only interested in the
situation where the value of λ is less than 0.5.

For the hierarchical modulation system, the carrier to noise ratio(CNR) is defined as

CNR = Es

σ 2
= ηT (β2 + α2)

σ 2
= ηT (1 + λ2)β2

σ 2
. (4)

Where Es is the carrier power and σ 2 = T η(1 + χline + χhet /T )N0 represents the noise
average power at the receiver. Note that N0 denotes the shot-noise variance, which should
be measured in real time in the experiment [16]. χline denotes the total channel-added noise
referred to the channel input, expressed in shot noise units. χhet refers to the heterodyne
detection-added noise expressed in shot-noise units. The 1 of the last expression σ 2 refers
to a quantum noise term, by which the received data are always accompanied. However, to
the first layer constellation, the noise consists of two terms, the system noise σ 2 and the
scattering of coherent states in the second layer constellation, ηT α2 [17, 18]. So the signal
to noise ratio of the first layer constellation can be accepted as the ratio of power of QPSK
modulation to noise power, and it is expressed by

SNR1 = ηTβ2

σ 2 + ηT α2
= CNR

λ2(1 + CNR) + 1
. (5)

The classical information bit error rate of our hierarchical modulation system will defi-
nitely increase compared with independent QPSK modulation system because of the second
layer quantum information. The performance of the first layer QPSK modulation system
before and after quantum information is added may be evaluated by comparing the values of
CNR and SNR1. Normally, we think the transmitting optical power of the first layer con-
stellation is constant. Therefore, we define the difference, Psnr , between CNR and SNR1
to evaluate the signal-to-noise ratio deterioration degree of the first layer QPSK modulation
system due to the existence of the second layer quantum information.

Psnr = CNR − SNR1 = λ2(1 + CNR)

1 + λ2(1 + CNR)
CNR. (6)

The Psnr , said a penalty, represents the additional carrier power that is needed in the hierar-
chical system so that the heterodyne receivers can show the same bit error rate performance
as in the independent QPSK system. The larger the Psnr is, the worse the heterodyne
receiver will perform in the system. The simulation diagram of Psnr is shown in Fig. 2.

In most deployed QPSK broadcast systems, the minimum operating CNR is below 7
dB [17]. This means the SNR of the first layer QPSK modulation system must be greater
than 7 dB due to the interference of the second layer CVQKD system. As shown in Fig. 2, at
CNR=7 dB, the Psnr is around 0.5 dB for λ= 0.1. The heterodyne receivers effectively get
a QPSK constellation with equivalence of SNR=6.5 dB, because the penalty is 0.5 dB. The
penalty increases with the increase of CNR, but the penalty becomes insignificant because
there are enough margins in the CNR to meet the desired performance. According to these
results, the desirable λ is under 0.1 to satisfy the operating condition of the heterodyne
detections.
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Fig. 2 The difference between CNR and SNR1 when the value of λ varies. The SNR1 is signal-to-noise
ratio of the first layer QPSK modulation system. The CNR is the carrier-to-noise ratio of the hierarchical
modulation system

3 Security Analysis of Four-State Protocol

For the CVQKD part in our hierarchical modulation scheme, we address the security of four-
state protocol with the assumption that Alice and Bob’s labs, and equipment, are trusted.
R.Renner and J.I.Cirac have proved that the derived bounds for the secret key generation rate
in the case of collective attacks remain asymptotically valid for arbitrary coherent attacks
in [7], which are the most powerful attacks allowed by quantum mechanics in the asymptotic
limit. So we restrict our security analysis to the case of collective attacks.

We know that a QKD protocol can be implemented by Prepared and Measure(PM)
scheme or Entanglement-Based(EB) scheme, which are equivalent in the case of four-state
protocols. Implementations are usually simpler for PM scheme, but EB scheme is easier to
analyze theoretically. For the EB version of the four-state protocol, Alice prepares a pure
two-mode entanglement state: |	〉 = ∑3

k=0
√

λk|φk〉|φk〉 where

λ0,2 = 1

2
e−α2

[

cosh
(

α2
)

± cos
(

α2
)]

(7)

λ1,3 = 1

2
e−α2

[

sinh
(

α2
)

± sin
(

α2
)]

(8)

and

|φk〉 = e−α2/2

√
λk

∞
∑

n=0

α4n+k

√
(4n + k)! (−1)n |4n + k〉. (9)

The pure state can also be rewritten as |	〉 = 1
2

∑3
k=0 |ψk〉|αk〉 where the states

|ψk〉 = 1

2

3
∑

m=0

e−i(1+2k)m(π/4)|φm〉 (10)

are orthogonal non-Gaussian states. Then Alice continues to perform the projective mea-
surement |ψk〉〈ψk| (k = 0, 1, 2, 3) on one of the modes. The coherent state |αk〉 is prepared
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when Alice’s measurement gives the result k. This coherent state is sent to Bob through the
quantum channel. At Bob’s trusted area, he measures both quadratures for each coherent
state with a heterodyne detection. After the quantum transmission phase, the two sides of
the communication share a correlated key string, which needs to be proceed with classical
data processing procedures.

Under collective attacks, Eve’s accessible information is written as S4 (y : E) in four-
state protocol, which is maximized when the state ρAB shared by Alice and Bob is
Gaussian [6, 19, 20]. Therefore, the value of S4 (y : E) is upper bounded by a function of
the covariance matrix  of ρAB [21]:

S4 (y : E) � f () , (11)

where f is an entropic function depending on the symplectic eigenvalues of . In the Gaus-
sian protocol based on coherent state,the covariance matrix G of the shared state ρAB after
the quantum channel can be computed and depends on Alice’s modulation variance VA in
the PM version of the protocol and the transmission T and excess noise ξ of the channel.

G =
[

(VA + 1) I2
√

T ZGσZ√
T ZGσZ (1 + T VA + T ξ) I2

]

(12)

In the above formula, I2=diag(1,1), σZ=diag(1,-1). The ZG has the form with ZG =
ZEPR =

√

V 2
A + 2VA. For the four-state protocol, Ref. [22] has proved that the covariance

matrix 4 of the state ρAB has the same form as G after the quantum channel. It can be
expressed as

4 =
[

(VA + 1) I2
√

T Z4σZ√
T Z4σZ (1 + T VA + T ξ) I2

]

. (13)

Note that Z4 is a function of the modulation variance VA. When the modulation variance
VA is small enough, Z4 is very close to ZG, as shown in Fig. 3. We can see that the two are
almost impossible to distinguish in the region of VA < 0.5 from the graph. So the Holevo
quantity between Eve and Bob’s classical variable is very similar in these two protocols
conditioned on VA < 0.5. Hence, the Holevo key rate in four-state protocol reads

Kcoll = ζ I (x : y) − S4 (y : E) ≈ ζ I (x : y) − SG (y : E) , (14)

which is against collective attacks in the asymptotic limit.

4 Analysis and Simulation

4.1 Classical Information Bit Error Rate Analysis

To evaluate the performance of our proposed protocol, we derive the bit error rate of classi-
cal information in the hierarchical modulation scheme. In fact, two kinds of modulation are
mutual interference in the hierarchical modulation scheme. The noise caused by four-state
modulation for CVQKD therefore needs to be considered in classical information bit error
rate analysis. In Section 3, we obtain the condition in which the modulation variance VA of
four-state modulation CVQKD scheme is less than 0.5 to ensure the security of CVQKD.
Besides, the ratio λ should be less than 0.1 to ensure that the heterodyne detector works
effectively. So the bit error rate of classical information is calculated in this condition. In
the following simulation process, we set the classical signal intensity β to a different value
to observe the effect of β on the classical information bit error rate. For each β, we set
different λ values to verify the effect of quantum signal intensity α on simulation results.
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Fig. 3 Comparison of the covariance coefficient Z4 for the four-state protocol and ZG for the Gaussian-
modulation protocol as a function of the modulation variance VA

For the first layer QPSK modulation constellation diagram in hierarchical modulation
scheme, the in-phase branch and the quadrature branch are mutually independent and can be
treated separately. Because the bit error ratio of the in-phase branch and quadrature branch
is equivalent, the average error probability of in-phase branch and quadrature branch over
transmission medium is expressed as follows.

PeI = PeQ = 1

2
erf c

⎛

⎝

√

ηTβ2

(2 + 2υel + ηT ε + ηT VA)N0

⎞

⎠ . (15)

In the above formula, the parameters are defined as follows. (1) T = 10
−γL

10 is the quantum
channel transmittance, where L is the fiber length. (2) VA = 2α2 is modulation variance of
the second layer four-state modulation in the hierarchical modulation scheme. (3) ε is the
excess noise in the quantum channel. (4) N0 = 1

4 denotes the shot-noise variance. (5) The
electronic noise of heterodyne detection is υel . The average bit error ratio of the lower layer
QPSK modulation scheme reads

Pb = 1

2
erf c

⎛

⎝

√

η

(2+2υel )N0
β210−γL/10 + εηN0

β2 + 2λ2ηN0

⎞

⎠ . (16)

Then we use the above model for numerical simulations of the classical information aver-
age bit error rate. We use practical system parameters and take full account of the sources
of noise in the numerical simulations process. The simulation data we used comes from the
reference [10, 13]:υel = 0.05, γ = 0.2dB/km, ε = 0.005 and η = 0.5. The simulation
results are plotted in Fig. 4.

From Fig. 4, when the modulation amplitude β = 5 in the first layer of hierarchi-
cal modulation scheme, the ratio λ of the quantum signal intensity α and the classical
signal intensity β is less than 0.1, which meet the simulation condition. The maximum
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Fig. 4 The classical information average bit error rate for different modulation amplitude β as a function of
the distance. a β = 5. b β = 10

transmission distance is about 5 kilometers to satisfy the average bit error rate 10−9 in
classical communication scheme. Considering the modulation amplitude β = 10, the
maximum transmission distance has increased to about 35 kilometers. As the modula-
tion amplitude β increases, the ratio λ becomes smaller. But the performance of the first
layer classical communication system is better with the increase of Euclidean distance
in the first layer constellation diagram according to the Fig. 4. It is important to note
that although the modulation amplitude is very large in the first layer of the hierarchi-
cal modulation scheme, the quantum key is still secure, because the quantum information
is encoded into the second layer constellation diagram of our hierarchical modulation
scheme.
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4.2 Quantum Key Rate Analysis

In this section, we derive the secure quantum key rate of the four-state modulation CVQKD
protocol in the hierarchical modulation scheme. As mentioned above, we only consider the
optimal collective attacks in the asymptotic limit. The secret key rate Kcoll is given once
more conditioned on reverse reconciliation by [21, 23]

Kcoll = ζ I (x : y) − S4 (y : E) , (17)

where ζ is the reconciliation efficiency; I (x : y) is the classical Shannon mutual informa-
tion between Alice and Bob’s data [24], and S4 (y : E) is the Holevo information between
Bob’s string and Eve’s quantum system in the four-state CVQKD protocol [25]. In practice,
all we focus on is the maximum value of S4 (y : E), which is computed in the Gaussian
state case. It’s relatively simple to derive the Shannon mutual information of Alice and Bob
for the case of heterodyne detection:

I (x : y) = 2 × 1

2
log2

VB

VB|A
= log2

V + χtot

1 + χtot

, (18)

where VB is the variance of Bob receiving signal, VB|A is the Bob’s variance conditioned
on Alice’s measurement result, and χtot refers to the total noise at the channel input, not
including the shot noise. They are expressed respectively as below.

V = 1 + VA (19)

χtot = χline + χhet /T (20)

VB = ηT (V + χtot ) /2 (21)

VB|A = ηT (1 + χtot ) /2 (22)

As discussed in the previous section, under the assumption that VA is small enough, the
Holevo quantity between Bob and Eve in four-state CVQKD protocol is close to that in
Gaussian modulation protocol. Especially when VA < 0.5, the Holevo quantity in these two
protocols can be treated as the same. Therefore, we can calculate the value of SG (y : E)

in Gaussian modulation CVQKD protocol [21] instead of getting S4 (y : E) . Through
simplification, the formula of S4 (y : E) can be expressed as

S4 (y : E) = G

(

λ1 − 1

2

)

+ G

(

λ2 − 1

2

)

(23)

−G

(

λ3 − 1

2

)

− G

(

λ4 − 1

2

)

.

where G(x) = (x + 1)log2(x + 1) − xlog2x. The symplectic eigenvalues λ1,2,3,4 of 4 and
A|b, the covariance matrix of Alice’s state conditioned on Bob’s measurement result, are
given by

λ1,2 =
√

1

2
(A ±

√

A2 − 4B). (24)

λ3,4 =
√

1

2
(C ±

√

C2 − 4D). (25)

where
A = V 2 + T 2(V + χline)

2 − 2T Z2
4 . (26)

B = (T V 2 + T V χline − T Z2
4)2. (27)
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C = Aχ2
het + B + 1 + 2χhet [V

√
B + T (V + χline)] + 2T Z2

4

[T (V + χtot )]2
. (28)

D = (V + χhet

√
B)2

[T (V + χtot )]2
. (29)

In a realistic setting, only a portion of the shared data by Alice and Bob can be used to
extract keys. So there is a coefficient ζ in front of variable I (x : y) in (17). The reconcil-
iation efficiency ζ depends on the SNR and modulation method. As mentioned in [10], ζ

increases with the increase of SNR in Gaussian modulation CVQKD protocol. And besides,
the reconciliation efficiency of a Gaussian modulation scheme is better than that of a dis-
crete modulation shceme in the case of a high SNR. Unlike the high SNR, the reconciliation
efficiency of a discrete modulation scheme is better under low SNR conditions. In our case,
it is reasonable to have a reconciliation efficiency higher than 50% under low SNR con-
ditions [9], because we use a discrete four-state modulation scheme in our protocol. So
we employ ζ = 0.5 in the simulation experiment. So far, we have finished the theoretical
analysis of secure key rate of the second layer four-state modulation CVQKD protocol.

According to actual experimental parameters in reference [13]:υel = 0.05, γ =
0.2dB/km, ε = 0.005 and η = 0.5, we have made a simulation analysis. The simu-
lation results based on the above security analysis are displayed in Fig. 5. We discuss
the quantum key generation rate of our protocol in the case of three different modulation
variances:VA = 0.1, VA = 0.3 and VA = 0.5 in Fig. 5.

The secret key generation rate is not proportional to the Alice’s modulation variance VA

under the restrictions of VA � 0.5 according to the Fig. 5. We know when the modulation
variance VA is 0.5, the secure quantum key rate is in the range of 10−3 bit/pulse to 10−1

bit/pulse within 40 kilometers.In this case, the maximum classical information bit error
rate is on the order of 10−7 under the condition of β = 10. When the modulatin variance
VA is equal to 0.1, the maximum transmission distance is about 20 kilometers. And the
maximum classical information bit error rate is about 10−5 under the condition of β = 5.
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Fig. 5 Secret key generation rate as a function of distance for the second layer four-state modulation
CVQKD protocol at different modulation variance:VA = 0.1, VA = 0.3 and VA = 0.5
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Furthermore, as the transmission distance is greater than 20 kilometres, the secure quantum
key rates suddenly deteriorate. So the system can’t perform key distribution normally after
20 kilometers in the case where the modulation variance is equal to 0.1.

Based on the above simulation results, the quantum key rate has nothing to do with
modulation amplitude β of the first layer in the hierarchical scheme. When the modulation
amplitude β of the classical signal is much larger than the modulation amplitude α of the
quantum signal, the value of α does not have much effect on the bit error rate of classical
information. We also learned that the transmission distance of our protocol is affected by the
modulation amplitude α because of VA = 2α2. So the appropriate modulation amplitude α

is very necessary in the transmitter in order to balance the transmission distance, classical
information bit error rate and secure quantum key rate. When modulation variance in the
transmitter is 0.3, the classical information bit error rate is about 10−5 in the case of β = 10
in 50 kilometers and the quantum key rate is about 10−3 bit/pulse.

5 Conclusions and Perspectives

In this paper, we proposed a new protocol for simultaneous transmission of the classical
information and quantum key based on QPSK/four-state hierarchical modulation scheme.
We proved that the QKD process is secure against collective attacks in the asymptotic limit,
when Alice’s modulation variance VA is very small (VA < 0.5) in the four-state modula-
tion CVQKD protocol. Through numerical simulations of using real parameters, we observe
the maximum transmission distance of our system. Our simultaneous transmission system
can achieve the secure quantum key distribution and reliable classical communication in
metropolitan area network. Although our scheme does not extend the communication dis-
tances, it improves the type of transmission information under the condition of a single
carrier. The proposed protocol also offers different degrees of protection to the transmitted
messages, which is useful for upgrading the one-to-many server/client systems to meet the
demands of different customers.

However, there are some problems that need to be studied further, such as the opera-
tion frequency of classical communication system and CVQKD system mismatch problem.
Because the maximum operation frequency of CVQKD experiment is far below the demand
of classical communication system, we have to sacrifice the speed of the classical commu-
nication to implement the simultaneous classical and quantum communication protocol. So
we should develop high-speed (above 10 GHz) shot-noise-limited heterodyne detectors in
future and the operation frequency of simultaneous transmission system will be continu-
ously improved. Besides, the noises from the classical channel will affect the performance
of QKD system in hierarchical modulation scheme. In this paper, we regard the overall
excess noise as a whole ε in quantum channel. In order to minimize the impact of noise on
QKD system performance, we can try to use the optical amplifier in simultaneous trans-
mission system [26, 27]. Next, the further research in this direction are likely to bring this
technology a step closer to a wide range of applications within the well laid metropolitan
area network.
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