
Published by

To be published in Photonics Research:
 

© 2020 Chinese Laser Press
 

Title:   Dielectric metalens-based Hartmann-Shack array for high-efficiency optical multi-
parameter detection system

Authors:   Jinsong Xia,Yuxi Wang,Zhaokun Wang,Xing Feng,Ming Zhao,Cheng
Zeng,Guangqiang He,Zhen Yu Yang,Yu Zheng

Accepted:   15 January 20

Posted   16 January 20

DOI:   https://doi.org/10.1364/PRJ.383772



Published by

Dielectric metalens-based Hartmann-Shack array for 
high-efficiency optical multi-parameter detection 
system 
YUXI WANG1,†, ZHAOKUN WANG1,†, XING FENG1, MING ZHAO1, CHENG ZENG1, 
GUANGQIANG HE2, ZHENYU YANG1,*, YU ZHENG3,* AND JINSONG XIA1,* 
1Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology 
(HUST), 430074, Wuhan, Hubei, China 
2State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiao Tong 
University, 200240, Shanghai, China 
3The State Key Laboratory of High Performance Complex Manufacturing, Central South University, 410083, Changsha, Hunan, China 
†These authors contributed equally to this work. 
*Corresponding Authors: zyang@hust.edu.cn; zhengyu@csu.edu.cn; jsxia@hust.edu.cn 

Received XX Month XXXX; revised XX Month, XXXX; accepted XX Month XXXX; posted XX Month XXXX (Doc. ID XXXXX); published XX Month XXXX

The real-time measurement of the polarization and phase information of light is very important and desirable 
in optics. Metasurfaces can be used to achieve flexible wavefront control and can therefore be used to replace 
traditional optical elements to produce a highly integrated and extremely compact optical system. Here, we 
propose an efficient and compact optical multi-parameter detection system based on a Hartmann-Shack array 
with 2×2 sub-array metalenses. This system not only enables the efficient and accurate measurement of the 
spatial polarization profiles of optical beams via the inspection of foci amplitudes but also measures the phase 
and phase-gradient profiles by analysing foci displacements. In this work, details of the design of the elliptical 
Si pillars for metalens are described, and we achieve a high average focusing efficiency of 48% and a high 
spatial resolution. The performance of the system is validated by the experimental measurement of 22 scalar 
polarized beams, an azimuthally polarized beam, a radially polarized beam and a vortex beam. The 
experimental results are in good agreement with theoretical predictions.                                                                                                                   

http://dx.doi.org/10.1364/AO.99.099999 

1. INTRODUCTION The amplitude, phase, and state of polarization (SOP) are fundamental parameters for describing light waves. At present, however, most photodetectors are only sensitive to the light intensity, which makes traditional polarization and phase detection systems complex, bulky and difficult to integrate. Metasurfaces are ultrathin two-dimensional metamaterials with subwavelength features, which can flexibly manipulate the amplitude, phase, and SOP of the light. Over the last few years, metasurfaces have become a versatile platform for wavefront control. Metasurfaces have subwavelength thicknesses, which has been exploited to develop compact optical devices with metasurfaces, such as polarization elements [1-8], holograms [9-11], and metalenses [12-19]. Compared with traditional lenses, metalenses offer the advantages of higher compactness and no spherical aberrations. Therefore, research on metalenses is becoming one of the most popular directions in the field of metasurface-based optics. Numerous studies have 

been conducted on plasmonic metasurfaces [20-23]. These studies are fundamentally limited in terms of the efficiency of utilizing visible and NIR wavelengths for transmission operation, which poses a key obstacle to the practical application of metasurfaces. These problems can be solved by using dielectric metasurfaces [24-29]. Therefore, many novel metalenses based on dielectric metasurfaces have been reported recently, including dielectric polarization-dependent metalenses [30-34], dielectric polarization-independent metalenses [35-37], and broadband achromatic dielectric metalenses [38-40]. The fabrication of these planar lenses is straightforward, and the lenses can be vertically integrated and can potentially replace or complement their conventional refractive and diffractive counterparts, facilitating further miniaturization of high-performance optical devices and systems. In a previous work, we demonstrated a dielectric metalens array for multi-parameter detection operating at 1550 nm [41]. The unit elements of the metalenses are composed of elliptical silicon pillars. Each pixel of the array consists of six different 
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Note that although the above mentioned experiments for polarization reconstruction and phase detection are carried out separately, the system can realize the measurements of polarization states and wavefront profiles simultaneously, which was confirmed in our last study and is also discussed in the wavefront measurement section of this study. Moreover, because the degree of polarization can be obtained by using the measured Stokes parameters, the system is also clearly suitable for partially polarized beams. The 2×2 metalens array proposed in this study has a higher spatial resolution and focusing efficiency than the previously developed 3×2 structure. Compression of the 3×2 sub-array into a 2×2 sub-array results in a 50% increase in the spatial resolution. For linearly incident polarizations, we measured an average focusing efficiency of 41%, which is higher than the previous measurement of 30%. For circularly incident polarization, the focusing efficiency is increased to 55%, which is superior to the previous value of 26%. The increase in efficiency can be attributed to the following two considerations. The first consideration is that reducing the lattice constant from 1.5 μm to 1.0 μm increases the density of the silicon nano-pillars in a metalens of the same size and smooths out the phase gradient across the metalens. A larger number of elliptical silicon pillars participate in the manipulation of the incident beam to form the phase required for focusing, which helps to improve the focusing efficiency. The second consideration is that the dimensions of the selected unit elliptical silicon pillar increase the transmittance by satisfying the focus phase requirement and polarization dependence. The increased transmittance of the unit elliptical silicon pillar means that more incident light is utilized, which also helps to improve the focusing efficiency. For a linearly polarized metalens, elliptical silicon pillars with high transmittance are selected as much as possible. For a l-polarized metalens, we maximize the second group of terms in equation (2) by choosing the largest absolute value of ݐ୭ − ୭ݐ while selecting the smallest possible value for ,ୣݐ +  .in the first group of terms. Under this condition, the incident light is almost completely converted into the opposite circular-handedness, and the transmittance of unit elliptical silicon pillar is increased. It is well known that focusing efficiency and resolution are critical in optical imaging and optical probing. The increase in the focusing efficiency shows that more incident light is utilized, enabling weaker signals to be detected. The improvement in the resolution can further enrich the details of the incident light and increase the detection capability of the device. The improvement in the focusing efficiency and resolution helps to increase the accuracy of the measurement of the incident light and to increase the detection capability of the device. In the experiments, the average measurement error of the scalar polarized beams is 4.24%, which is smaller than our previously obtained value of 4.83%. For two vector polarized beams (a radially polarized and an azimuthally polarized beam), the measurement errors are 6.28% and 2.49% respectively, which are better than our previously obtained values of 6.33% and 4.46%. The measurement error in the vortex beam detection is 6.4%, and our previously obtained value is 8.0%. In summary, we have demonstrated the operation of an optical multi-parameter detection system based on an all-dielectric metalens array at 1550 nm in this study. Each pixel of the metalens array consists of four differently polarized sensitive metalenses. By measuring the intensities and positions of the focal points, the system can realize the real-time detection of the SOP and wavefront distributions of the incident light  ୣݐ
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