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Eigenvalue spectrum analysis for temporal signals of Kerr optical
frequency combs based on nonlinear Fourier transform*
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Based on the nonlinear Schrödinger equation (NLSE) with damping, detuning, and driving terms describing the
evolution of signals in a Kerr microresonator, we apply periodic nonlinear Fourier transform (NFT) to the study of signals
during the generation of the Kerr optical frequency combs (OFCs). We find that the signals in different states, including the
Turing pattern, the chaos, the single soliton state, and the multi-solitons state, can be distinguished according to different
distributions of the eigenvalue spectrum. Specially, the eigenvalue spectrum of the single soliton pulse is composed of
a pair of conjugate symmetric discrete eigenvalues and the quasi-continuous eigenvalue spectrum with eye-like structure.
Moreover, we have successfully demonstrated that the number of discrete eigenvalue pairs in the eigenvalue spectrum
corresponds to the number of solitons formed in a round-trip time inside the Kerr microresonator. This work shows that
some characteristics of the time-domain signal can be well reflected in the nonlinear domain.

Keywords: nonlinear Fourier transform, Kerr optical frequency combs, nonlinear signal processing

PACS: 42.65.Sf, 42.65.Tg DOI: 10.1088/1674-1056/ab683a

1. Introduction
The nonlinear Fourier transform (NFT), also known as the

inverse scattering transform (IST), is a powerful mathematical
tool to solve the problems of wave propagation in some certain
nonlinear media, especially in the field of soliton theory.[1] In
contrast with the linear Fourier transform (FT), where the sig-
nal is decomposed into the superposition of sine waves so as
to obtain the frequency components in the linear frequency do-
main, the nonlinear Fourier transform can decompose the sig-
nal into soliton components and non-soliton components (also
known as radiation components) to obtain the corresponding
nonlinear frequency components.

In recent years, NFT has been widely used in the field of
optical fiber communication. The nonlinear Schrödinger equa-
tion (NLSE) is the mathematical model to describe the signal
propagation in the optical fiber channel.[2–4] Without consid-
ering the channel noise, NLSE can be approximated as an in-
tegrable partial differential equation. In this case, the complex
evolution problems of time-domain signal and linear spectrum
can be converted into a simple nonlinear spectrum evolution
problem by using NFT.[5–7] Based on this characteristic, many
researchers have carried out a series of theoretical studies and
experiments to reduce the unfavorable restriction brought by
fiber nonlinearity to optical fiber communication.[8–12] The re-
alization of high-speed and reliable fiber communication sys-

tem has proved the superiority of NFT in solving the NLSE
problem.[13–15] In 2018, Ryczkowski et al.[16] used NFT to
analyze the transient dissipative soliton dynamics in a mode-
locked laser, clearly observed the presence of local soliton
content, and promoted the application of NFT in describing
ultra-short pulses.

In this paper, we use NFT to study the temporal sig-
nals of Kerr optical frequency combs (OFCs) based on Kerr
microresonator. The Kerr OFCs are presented as a series
of precisely equidistant spectral lines with extremely narrow
linewidth in the linear frequency domain, and the correspond-
ing time-domain signals of OFCs in stable soliton state are
presented as periodic ultra-short laser pulse sequences.[17,18]

We can clearly distinguish the unstable state and different sta-
ble states of OFCs, including the chaos, the Turing patterns,
and various soliton states, according to the eigenvalue spec-
trum obtained by NFT for various temporal signals in the cav-
ity. We also find that the number of discrete eigenvalue pairs
is consistent with the number of solitons formed in the intra-
cavity round-trip time.

2. The theory
2.1. The model for Kerr OFCs generation

The generation of Kerr OFCs is described by the spa-
tiotemporal Lugiato–Lefever equation (LLE) whose normal-

*Project supported by the National Natural Science Foundation of China (Grant Nos. 61475099 and 61922040), Program of State Key Laboratory of Quantum
Optics and Quantum Optics Devices, China (Grant No. KF201701), and the Key R&D Program of Guangdong Province, China (Grant No. 2018B030325002).

†Corresponding author. E-mail: gqhe@sjtu.edu.cn
© 2020 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb　　　http://cpb.iphy.ac.cn
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ized form follows[19,20]

∂Ψ

∂τ
=−(1+ jζ0)Ψ + j|Ψ |2Ψ − j

β

2
∂ 2Ψ

∂φ 2 + f . (1)

On the left-hand side, Ψ(τ,φ) is the complex envelope of the
intracavity field, and τ denotes the normalized time. On the
right-hand side, ζ0 = 2(ω0 −ωp)/κ denotes the normalized
detuning of the pump laser ωp from the resonance frequency
ω0, κ stands for a coupled resonance width (also known as the
total linewidth), φ is the co-rotating angular coordinate inside
the resonator, and β = −2D2/κ is the overall dispersion pa-
rameter with D2 being the second-order dispersion, that is, the
anomalous group velocity dispersion (GVD) regime follows
β < 0, while the normal GVD regime is defined by β > 0. f
represents the dimensionless external pump field intensity, for
completeness, f can be calculated by

f =

√
8gηPin

κ2h̄ω0
. (2)

Here, Pin is the optical power (in W) of the laser pump at the

input of the resonator, g =
h̄ω2

0 cn2
n2

0Veff
is the nonlinear coupling

coefficient, h̄ is the reduced Planck constant, c is the speed
of light in vacuum, n0 and n2 are the linear and nonlinear re-
fraction indices of the material, respectively, and Veff denotes
the effective volume of the pumped mode. η = κext/κ is the
coupling efficiency related to coupling (or extrinsic) linewidth
κext and total linewidth κ , where κ = κin +κext and κin is the
intrinsic linewidth.

We then consider the dimensionless longitudinal coordi-
nate θ = φG in the anomalous GVD regime (β < 0), where

G =
√

1
2d2

and d2 = D2/κ is the dimensionless dispersion.

Equation (1) can be further simplified to[21,22]

j
∂Ψ

∂τ
+

1
2

∂ 2Ψ

∂θ 2 + |Ψ |2Ψ = (−j +ζ0)Ψ + j f , (3)

which is known as the nonlinear Schrödinger equation with
damping, detuning, and driving. When the interaction between
dispersion and nonlinearity effect is counteracted and the en-
ergy in the cavity is balanced, dissipative solitons with invari-
ant envelope along the propagation will be formed in the time
domain, and in turn stable OFCs will be generated in the linear
frequency domain. In other words, the soliton solution can be
the stable solution to Eq. (3), which is similar to the standard
normalized NLSE. Based on the similarity between them, in
this paper, we use NFT for NLSE to analyze the intracavity
signal governed by Eq. (3).

2.2. Periodic nonlinear Fourier transform

There are now a lot of detailed NFT algorithms for NLSE,
both for periodic boundary condition[23] and non-periodic
boundary condition, and the latter is usually called vanishing

boundary condition.[24] The basic idea for Eq. (1) is to treat
the light propagating in the circular direction inside the res-
onator as the signal propagating along an unfolded track with
periodic boundary conditions,[25] that is,

Ψ(τ,φ)≡Ψ(τ,φ + l), l = 2π. (4)

The above periodicity also applies to Eq. (3) by changing the
value of l. Thus, the NFT algorithm with periodic boundary
condition is adopted in this work. According to Ref. [23],
where the fast nonlinear Fourier transform (FNFT) for the pe-
riodic boundary condition was introduced, the nonlinear fre-
quency domain after FNFT includes two parts: the main spec-
trum and the auxiliary spectrum.[26] The auxiliary spectrum
is also known as the hyperelliptic mode, which is not within
the scope of this paper. Our work focuses only on studies of
the main spectrum which consists of discrete eigenvalues that
remain invariant during pulse evolution according to the stan-
dard NLSE (all terms on the right-hand side of Eq. (3) vanish).
The eigenvalue, also known as the nonlinear frequency, is the
nonlinear analogue of the frequency given in FT. The differ-
ence between the two is that the latter refers to real numbers,
while the former is distributed in the complex plane and has
real axial symmetry.

For the standard NLSE, its NFT is indeed the IST of
Zakharov–Shabat problem (ZSP) which can be expressed in
the following form:[1]

∂v1

∂φ
=−jλv1 +Ψv2,

∂v2

∂φ
=−Ψ *v1 + jλv2,

(5)

where Ψ is the complex envelope of the time-domain sig-
nal, and Ψ * denotes its conjugate signal. The nonlinear
frequency parameter λ is a complex eigenvalue, i.e., λ =

Re(λ ) + jIm(λ ), whose real part reflects the frequency and
imaginary part reflects the amplitude of the corresponding
time-domain signal. More detailed theory can be found in the
next section. v = [v1 v2]

T represents the eigenvector which
subjects to the eigenvalue function Lv = λv, and

L = j


∂

∂φ
−Ψ(τ,φ)

−Ψ *(τ,φ)
∂

∂φ

 (6)

is an operator whose eigenvalues are independent of time φ .
For the fact that we just consider the signal in one period, the
solutions of Eq. (5) are denoted as Φ(φ) and Φ̃(φ) with the
canonical initial conditions (φ0 corresponds to the left bound-
ary of the signal in a period)

Φ(φ0) =

[
1
0

]
, Φ̃(φ0) =

[
0
1

]
. (7)

Define the so-called monodromy matrix

M(λ ) :=
[
Φ(φl) Φ̃(φl)

]
, (8)
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and its Floquet discriminant ∆(λ ) := 1
2 trM(λ ), where φl corre-

sponds to the right boundary of the signal in a period according
to Eq. (5). Then we can obtain the eigenvalues space ℳ by the
following method when D euqidistant samples of the signal Ψ

are given:

ℳ=

{
λk ∈ C

∣∣ ∆(λk) ∈ {±1} , d∆

dλ

∣∣∣∣
λ=λk

̸= 0
}
. (9)

The eigenvalues space ℳ consists of discrete complex num-
bers and can be called as the eigenvalue spectrum in the non-
linear frequency domain. In this work, we only give a brief

description of the basic concept of FNFT, and interested read-
ers may refer to Ref. [23] for the detailed derivation process.

Since any signal can be regarded as the combination of
soliton component and radiation component, although either
of these two can be absent for some specific case,[26] the eigen-
value spectrum obtained from NFT actually consists of two
parts, the eigenvalues corresponding to the soliton component
and the eigenvalues corresponding to the radiation component
of the signal. Figure 1 shows the eigenvalue spectra of 4 dif-
ferent signals via NFT.
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Fig. 1. The eigenvalue spectrum distribution of (a) Ψ(t) = sech(t)e j0.5; (b) Ψ(t) = sech(2t)e j0.5; (c) Ψ(t) = sech(t)e j sech(t); (d) Ψ(t) =
2sech(2t)e j0.5. Each inset shows the intensity and phase features of the corresponding time domain signals.

According to Matsuda et al.,[27] signals in the form of
u(t) = Asech(At) (A is a real number) can be a soliton solu-
tion (i.e., stationary solution) of NLSE and have definite eigen-
values ±jA/2. When the phase of such a signal is constant,
the eigenvalue occurs at the same position, just as Figs. 1(a)
and 1(d) show. There are obvious isolated discrete eigenval-
ues at ±0.5j for signal Ψ(t) = sech(t)e j0.5 and ±1j for signal
Ψ(t) = 2sech(2t)e j0.5, and the remaining eigenvalues are all
0. In this sense, we relate such isolated eigenvalues in the
eigenvalue spectrum to the soliton component in any signal
and the remaining to the radiation component. Considering
the physical meaning of eigenvalue λ , a pulse in the form of
u(t)=Asech(At) can also be understood as a signal containing
a single nonlinear frequency. Figure 1(b) gives the eigenvalue
spectrum of signal Ψ(t) = sech(2t)e j0.5 and all the eigenval-
ues as shown in the eye-like structure are related to non-soliton
signal component because no obvious isolated discrete eigen-
values can be observed. Here we again recall the physical
meaning of eigenvalues and it is worth to mention that when

the pulse u(t) = sech(At) gets narrower by increasing A, the
eye-like structure expands horizontally. That is to say, a nar-
rower time domain signal corresponds to an increase in the
nonlinear frequency component, which is a property similar to
that of the linear spectrum. By taking the time-variant phase
into consideration, an eye-like structure will also appear near
the real axis of λ . As a result, the soliton eigenvalues become
below the ideal eigenvalues of ±0.5j in Fig. 1(c) compared
with Fig. 1(a), which is subjected to the Parseval identity.[1]

In short, different time domain signals show distinct nonlinear
frequency domain characteristics via NFT, which is the basis
of our work.

3. Eigenvalue spectrum analysis based on peri-
odic NFT

3.1. Case 1

Based on the above property, we can study different sig-
nals in the Kerr microresonator, and we use two different sets
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of parameters for the Kerr OFCs simulation. We first start
with a simple case of forming an optical frequency comb with
one-way scan of the pump laser. Figure 2 shows the tempo-
ral evolution, and the related simulation parameters are Pin =

0.755 W, λ0 = 1550 nm, κ/2π = 287 MHz, n0 = 2.122, n2 =

2.4×10−19 m2/W, D1/2π = 44.48 GHz, D2/2π = 12.5 MHz,
Veff = 3.6594×10−15 m3, and η = 0.9989.

As can be seen from Fig. 2, different states can be ob-
tained from different detuning via tuning by scanning the
pump laser frequency. Clearly, there are four distinct time-
domain signals corresponding to the pump laser, Turing pat-
tern, chaos, and soliton state, respectively. It is important to
point out that the so-called soliton state here corresponds to the
stable solution to Eq. (5) and is different with the soliton com-
ponent defined early. The periodic FNFT is then performed to
these signals and we try to find their corresponding nonlinear
spectrum characteristics. Due to the simplicity of the linear
frequency domain when there is only pump light in the cavity,
we do not consider its nonlinear domain in this paper. Fig-
ure 3 shows the time-domain signals (left column) of interest
in Fig. 2 and their eigenvalue spectra (right column).
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Fig. 2. The temporal evolution diagram inside the Kerr microresonator
during one-way scan of the pump laser.

Figure 3(a) describes the time-domain signal of the Tur-
ing pattern, which is a state of modulation instability. As
shown in Fig. 3(b), its eigenvalue spectrum is strictly sym-
metric, with respect to both the real axis and the imaginary
axis. The eigenvalue spectrum includes several isolated dis-
crete eigenvalue pairs, showing several nonlinear frequency
components. According to the specific distribution of the
eigenvalues, the Turing pattern temporal signal includes some
soliton components defined in our paper because there are
eigenvalues on the imaginary axis of the eigenvalue spectrum.
The time-domain signal for chaos which can arise in any non-
linear system is shown in Fig. 3(c), and its eigenvalue spec-
trum (Fig. 3(d)) is also disorderly. When the energy in the
cavity reaches an equilibrium, and the dispersion and nonlin-
ear effects cancel each other out, the dissipative soliton forms
as shown in Fig. 3(e). Its eigenvalue spectrum includes ob-
vious quasi-continuous eigenvalues corresponding to the ra-

diation component and a pair of soliton discrete eigenvalues,
where the imaginary part of the discrete eigenvalues can reflect
the amplitude feature of the soliton. It needs to be noted that,
sometimes, breathing solitons will occur in the tuning process,
that is, the intensity of a temporal soliton will change period-
ically with time. Under this circumstance, the position vari-
ation of the discrete eigenvalues can be utilized to judge the
existence of a breathing soliton. Thus, according to differ-
ent distributions of eigenvalues of these signals, we can easily
distinguish different stages during the forming of OFCs in the
nonlinear frequency domain.
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Fig. 3. The intensity and phase portrait of the intracavity signals
(left column) and the corresponding eigenvalue spectra obtained by
FNFT (right column). The corresponding normalized detunings are (a)
ζ0 = 3.86, (c) ζ0 = 5.63, (e) ζ0 = 12.68.

3.2. Case 2

Next, we consider the more complex case of Kerr OFCs
generation with multiple temporal solitons existing in a round-
trip time. The necessary simulation parameters are listed as in
Ref. [22] Pin = 2 W, λ0 = 1553 nm, κ/2π = 300 MHz, n0 =

2.4, n2 = 2.4× 10−19 m2/W, D1/2π = 100 GHz, D2/2π =

2.5 MHz, and Veff = 1.0× 10−15 m3. Here, we apply the dif-
ferent parameter η = 0.50 which is the critical coupling effi-
ciency. The resulted temporal evolution diagram is shown in
Fig. 4. In this simulation for the generation of Kerr OFCs,
the pumped laser frequency is scanned forward and backward,
that is, we gradually decrease ωp and then increase it, which
can be observed from the variation of the normalized detuning
in the figure. Thus, by combining the tuning process with ther-
mal effect, abundant soliton dynamic processes can be formed
in the Kerr microresonator. Similarly, the time-domain signals
of interest are extracted from the tuning process, including the
Turing pattern, chaos, single soliton, and multi-solitons state.
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erated during the decrease of ωp, while ζ0 = 23.89 for the single soliton
state generated during the increase of ωp.

First, we analyze the time-domain signals of Turing pat-
tern and single soliton state. Figure 5 shows the temporal
intensity and phase profiles, linear spectrum, and nonlinear
eigenvalue spectrum of these two signals. In this case, the
generated Turing pattern and soliton signal within an intracav-
ity round-trip time are different from those in case 1, and the
obtained eigenvalues are quite different. However, the distri-
bution of eigenvalues follows the same rule, i.e., strictly sym-
metric discrete eigenvalue pairs for the Turing pattern (see
Fig. 5(e)), and combination of a pair of discrete eigenvalues
and quasi-continuous spectrum with obvious eye-like struc-
ture for the single soliton pulse (see Fig. 5(f)). Figures 5(c)
and 5(d) show the linear spectrum. A few frequency compo-
nents exist in the linear domain for the signal with Turing pat-
tern, which is also known as the modes of the primary comb.
Once a stable dissipative soliton pulse is formed, the optical

frequency comb with smooth and stable envelope and wide
band will be generated as Fig. 5(d) shows, which is also what
we hope to get. Here, we discover that there is a certain cor-
relation between the nonlinear eigenvalue spectrum and the
linear spectrum for the fact that the real part of the eigenvalue
represents the frequency of the signal. That is, for the signal
with Turing pattern, there are only a few frequency compo-
nents either in the linear or nonlinear frequency domain. For
a single soliton pulse, except for a pair of isolated eigenvalues
corresponding to the soliton component of the initial signal,
all the other nonlinear frequency points are smoothly and uni-
formly distributed in the nonlinear frequency domain, which
is also a property of linear frequency lines distribution.

0

2

4

-2

0

2

P
h
a
se

-200 0 200
Mode

-140

-100

-50

0

S
p
e
c
tr

u
m

/
d
B

-200 0 200
Mode

-80

-60

-40

-20

0

-10 0 10
-0.2

0

0.2

-10 0 10

-0.1

0

0.1

0

0.2

0.4

-2

0

2
(a) (b)

(c) (d)

(e) (f)

π0−π
θ/G

π0−π
θ/G

|Ψ
|2

Im
(λ

k
)

III: ζ0=35.16 IV: ζ0=27.34

Re(λk) Re(λk)

Fig. 6. The temporal intensity and phase profiles, linear spectrum, and
nonlinear eigenvalue spectrum of chaos (left column) and 4-solitons
state (right column). ζ0 = 35.16 for the chaos generated during the de-
crease of ωp, while ζ0 = 27.34 for the 4-solitons state generated during
the increase of ωp.

Then we analyze the chaotic and multi-solitons tempo-
ral signals. The temporal characteristics for the chaos and 4-
solitons state are captured as Fig. 6 shows, as well as their fre-
quency characteristics. The time-domain signal of 4-solitons
here is non-periodic in a round trip time, that is, the distance
between the 4 solitons is not equal. So, its linear spectrum
(Fig. 6(d)) is very similar to that of the chaos (Fig. 6(c)), they
both look very noisy, and thus the multi-solitons state may
sometimes be mistaken as chaotic states just by identifying
the linear spectrum. In essence, however, they are significantly
different from each other. That is, the modes of chaotic OFCs
are incoherent, so the comb is unstable, whereas the multi-
solitons comb is generally stable. Based on the NFT analysis
of the two time-domain signals in Figs. 6(a) and 6(b), the non-
linear eigenvalue spectra are obtained as shown in Figs. 6(e)
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and 6(f). As mentioned above, the eigenvalue spectrum of
chaos is also chaotic, while the eigenvalue spectrum of the
4-solitons signal is actually ordered because of the strict sym-
metry of the discrete eigenvalues arisen from its radiation com-
ponents, which ensures a good distinction between the multi-
solitons signal and chaotic signal. We can also observe 4 pairs
of obvious isolated eigenvalues in Fig. 6(f) corresponding to
the signal’s soliton components, and the number of solitons in
the temporal pulse is also 4. It should be noted that we have
carried the proper adjustments to the signal amplitude in the
multi-solitons case to capture the signal in the form of soliton
components Asech(At) as close as possible for further NFT
analysis.

We also perform the periodic nonlinear Fourier transform
analysis of 7-solitons and 9-solitons signals, and obtain the
nonlinear eigenvalue spectra as shown in Fig. 7. By adjusting
the amplitude of the signal extracted from the temporal evo-
lution, the corresponding soliton eigenvalues and non-soliton
eigenvalues separate well in the eigenvalue spectrum. For a
more intuitive view, partial eigenvalue spectra for 7-solitons
and 9-solitons are presented and thus we just focus on the dis-
tribution of isolated soliton eigenvalues. We also find that the
number of isolated eigenvalue pairs corresponds to the num-
ber of solitons in the time domain, that is, there are 7 pairs of
distinct isolated eigenvalues for the 7-solitons temporal signal
and 9 pairs for the 9-solitons state.
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Fig. 7. The temporal intensity and phase profiles, and nonlinear eigenvalue spectrum of 7-solitons (left column) and 9-solitons states (right
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4. Conclusion

In summary, based on the fact that the normalized LLE
can be regarded as the NLSE including several other effects,
we can apply periodic NFT to the analysis of signals during
the generation of OFCs in the Kerr microresonator. We finally
find that the signals at different states can be distinguished
clearly according to different distributions of the eigenvalue
spectrum. For the time-domain signal extracted from a chaotic
state, its eigenvalue distribution is also disordered. The eigen-
value spectrum of the Turing pattern is characterized by sev-
eral strictly symmetric isolated eigenvalue pairs. Specially, the
eigenvalue spectrum of the single soliton pulse is composed
of a pair of conjugate symmetric isolated eigenvalues and the
quasi-continuous eigenvalue spectrum with eye-like structure.
Take NFT analysis directly for the multi-solitons time-domain
signal in the cavity, the eigenvalue spectrum obtained is com-
plex but ordered. By adjusting the signal amplitude, we can
approximately capture the waveforms corresponding to the

soliton components. In this way, obvious soliton eigenvalue
pairs are obtained by NFT and its number is consistent with
the number of solitons formed in the microresonator.

In this work, we have discovered that there is a certain
correlation between the nonlinear eigenvalue spectrum and the
linear spectrum. However, the accurate correspondence needs
to be studied in the future. And we hope to derive the math-
ematical form of amplitude adjustment in the case of multi-
solitons from the expression of soliton solution in Kerr mi-
croresonator in next work for richer soliton dynamics analysis.
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