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Abstract: A compact scheme for the generation of path-polarizatidaregied photon pairs
is proposed by using a quasi-periodic nonlinear photoryistat to simultaneously accomplish
four spontaneous parametric down-conversion processes.
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Inspired by the notion of hyperentanglemelit which refers to the entanglement at multiple degreesegdom
(DOFs) such as polarization, frequency, energy tietg we focus on producing hyperentanglement at the polaoizati
and spatial mode by using a single designed quasi-peride té phase match several SPDCs. This method enables
to create multiple spatial modes (larger than two) in thé{ettiarization hyperentanglementin a single quasi-pkcio
NPC instead of using different cascaded periodic NPCs asnreggeneration schemes of path entanglement. So this
method can be seen as a more compact scheme.
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Fig. 1. (a) Schematic for the generation of path-polariratiyperentangled photon pairs. (b) Struc-
ture of the PPLN NPC. Scale is prm, drawn with an aspect ratio of approximately 1:25. (c) Fewuri
transformG(k) of the PPLN NPC.

The schematic for the generation of path-polarization hgmpiangled photon pairs is displayed in Fig.1(a). We have
a pump photon with the wavelength of 532nm injected into tegighed NPC, and the signal and idler photons with
wavelength of 1064nm are assumed to be generated in ouresmgig. From an intuitive perspective, the signal and
idler photons are firstly polarization entangled; and sithey come out from either of the two spatial modes shown in
Fig.1(a), they are also path entangled. The NPC displayEdjii (a) is designed to simultaneously accomplish QPM
of the 4 different SPDC processes, which can be depicték ag, = Kpo — Ks;o(e) — Ki e(0)- Kpo represents the wave
vector of the pump lightd light); ks(i)jo(e) represents the wave vectors of signal(idler) lightight or e light, j = 1
or 2). The directions of the wave vectors of beakns, Ks,o(e)s Kise(0)) Kso(e): Kiye(o) are 0,58, —58,74°, —74°
respectively. Periodically poled lithium niobat (PPLN)dsosen as the NPC material and the working temperature
is 21°C. Through engineering of the PPLN NPG, #] to accomplish QPM of the mismatch vectors, the structure
of PPLN NPC is depicted by Fig.1(b) and the tiling vectorsvehin Fig.1(b) area? = (7.87,—46.67)um, al? =
(7.87,46.67)um, a® = (17.33,—55.03)um, al¥ = (17.33 55.03)um.

Each red dot with radius oftimin Fig.1(b) is called motif4] where x(? = 1, andx(® = 0 in other areas of the
PPLN NPC. Fig.1(c) depicts the Fourier transform of the PRRC. We can clearly distinguish Bragg peaks at the
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positions of the required mismatch vectdis;e, Ak 1, AK2e, Ak 2o, Based on this crystal, we have quantum stgite
of photon pairs a§s) = (C [HV) +Cl [VH))[1)g,[1);, 10}, |0)i, + (C&[HV) +CZ [VH))[0)¢,[0);,|1)s,|1);,, where
CL, = Cl = 0.483CZ = CZ, = 0.516. This is aptly the required path-polarization hypesagtement.

We design an experimental scheme and the criteriglrte verify the path and polariztion entanglement sepayatel
The experiment setup is shown in Fig.2(a).
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Fig. 2. (a) Experimental setup which is used to verify patd aolarization entanglemenBS;
andBS; are beam splitters with transmission coefficiént 0.5. To verify path and polarization
entanglement, we collect coincidence from detectors vedjasting prisms and polarizers. (b) Nor-
malized coincidence counting B, D3 andD1, D4 with respect to phase modulatigsy (— 3,) and
modulation of polarizer + 6-).

To verify the path entanglement, the polarizers are temppr@moved so that all polarization components are
included. With the coincidence of detectors measured xpected coincidence count rate can be writteCés, ¢j) O
1.02+ cogB1 — B2), where the sigri+) holds for(cy, c3) and(cz,c4), and the sigri—) has to be taken fqcs, c4) and
(c2,¢3). Two photon coincidence can be measured by using the phisggs =0, 8." = J andB, = 7.52" = 37”.
The expected value&g = 2.357 > 2, verifies the path entanglement betwegni; ands,, io. Then we discuss the
measurement of polarization entangleméfjt With the rotation of polarizer, we havec(cy,cs3) O sin2(91+ 62).
Fig.2(b) depicts the relation between normalized coinuigecounting and angular settings of polarizers and shows
the visibility, V = 1. Two photon coincidence can be measured by using the angetling6; = 0, 6,* = 7 and
O =g§.0" = 3 The expected valu&, = 2.828> 2, verifies the polarization entanglement between sigreidiar.

Thus, we design a compact generation scheme of path-patianzhyperentangled photon pairs by using QPM of
4 SPDC processes in a designed quasi-period PPLN NPC andearegptal scheme which examine polarization
and path entanglement separately, and theoretically geerical results which verify some predictions about the
hyperentanglement.
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