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We propose a scheme for generating a new kind of sideband,
i.e., the fraction-order sideband, in an optomechanical
system. In the conventional scheme of high-order sideband
generation [Opt. Lett. 38, 353 (2013)], the sideband inter-
val has a minimum frequency limitation, which is equal to
the mechanical frequency ωb, and this limits the precision
of the sideband comb. With our proposed fraction-order
sidebands, the sideband interval can break that limitation
and reach ωb/n (n is an integer). The scheme we propose can
be realized by driving the optomechanical system with three
laser fields, including a control field (ωc) and two probe
fields (ωp, ωf ), in which the detuning between ωc and ωp is
equal to the mechanical frequency ωb, while the detuning
between ωc and ωf is equal to ωb/n. In this case, we find that
not only the integer-order (high-order) sidebands, but also
the fraction-order sidebands, and the sum and difference
sidebands between the integer- and fraction-order side-
bands, will appear in the output spectrum. Moreover, the
sideband interval becomes ωb/n, and it can be decreased
by increasing n. Our work paves the way to achieve a tun-
able optical frequency comb based on the optomechanical
system. ©2020Optical Society of America

https://doi.org/10.1364/OL.399584

Optomechanics studies the interaction between light and
mechanical oscillators via radiation pressure [1]. A typical
optomechanical system consists of an optically driven Fabry–
Perot cavity with one movable end-mirror, which can undergo
harmonic oscillation under the influence of radiation pressure.
When the driving field is incident upon the cavity, the radiation
pressure will result in a displacement of the movable end-mirror,
and consequently lead to a change in the cavity resonance fre-
quency. Over the past few decades, great effort has focused on
this research area for its potential application in gravitational

wave detection [2], quantum networks [3], precision measure-
ment [4], and so on. Many important physical effects, such as
normal mode splitting [5], frequency conversion [6], optome-
chanically induced transparency [7], cooling of the mechanical
oscillator [8], entanglement, and squeezing [9,10], have been
investigated in various optomechanical systems.

Recently, nonlinear effects have become the leading edge
in the research of optomechanics. An interesting effect called
high-order sideband generation (HSG) has drawn more and
more attention for its important application in the achieve-
ment of a tunable optical frequency comb [11]. As a promising
technique, tunable optical frequency combs can be applied in
many engineering fields, such as precision ranging [12], tests of
fundamental physics with atomic clocks [13], metrology [14],
optical communication [15], and so on. In 2013, Xiong et al.
first demonstrate the HSG in an ultrastrong driven optome-
chanical system beyond the perturbative approximation [16].
Whereafter, people explored many other physical effects and
systems combined with optomechanical systems, such as the
Coulomb effect [17], atomic ensemble [18], Casimir effect [19],
and parity–time symmetry structure [20], to enhance the HSG.

In the above conventional schemes of HSG, the sideband
interval is equal to the mechanical frequency ωb . For a practical
optomechanical microcavity, its mechanical eigenfrequency is
usually fixed. That is to say, the sideband interval is untunable
and has a minimum frequency limitationωb , and this limits the
precision of the sideband comb. Here we propose a new kind of
sideband, i.e., the fraction-order sideband, which can be used
to break that limitation, and the sideband interval becomes
ωb/n (n is an integer). Our proposed scheme is based on an
optomechanical system driven by a control field (ωc ) and two
probe fields (ωp , ωf ), where the detuning between ωc and ωp
(ωf ) is equal to the mechanical frequency ωb(ωb/n). In this
case, the output spectrum consists of a series of integer-order
(high-order) sidebands, fraction-order sidebands, as well as the
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sum and difference sidebands between the integer- and fraction-
order sidebands, and the sideband interval can be decreased by
increasing n.

Our proposed scheme is shown in Fig. 1(a). We consider a
standard model of an optomechanical system where an optical
cavity mode â parametrically couples with a mechanical mode b̂
via radiation pressure. The cavity mode is pumped by a control
fieldωc and two probe fieldsωp andωf . The Hamiltonian of the
system can be expressed as (~= 1)

H =ωa â †â +ωb b̂†b̂ + g â †â(b̂†
+ b̂)

+ i[â †(εc e−iωc t
+ εp e−iωp t

+ ε f e−iωf t)−H.c.], (1)

where â (â †) and b̂(b̂†) are the bosonic annihilation (creation)
operators for the cavity mode and the mechanical mode with
frequencies ωa and ωb , respectively. g = xzpf ωa/L is the
single-photon optomechanical coupling strength, where
xzpf =

√
~/2mωb is the zero-point fluctuation, m is the mass

of the mechanical oscillator, and L is the length of the cav-
ity. The amplitude of the driving field is εy =

√
2κPy /~ωy

(y = c , p, f ), in which κ denotes the cavity damping rate, and
Py refers to the corresponding input power.

Based on the Hamiltonian (1), the evolution of the system can
be described by the Heisenberg–Langevin equations (in a frame
rotating at the frequencyωc )

dâ
dt
=−(i1a + κ)â − ig â(b̂†

+ b̂)

+ εc + εp e−iδp t
+ ε f e−iδ f t

+
√

2κ â in, (2)

Fig. 1. (a) Standard optomechanical system driven by a control
field (ωc ) and two probe fields (ωp , ωf ). (b) Schematic diagram of the
nonlinear sideband generation. We exhibit the integer-order sidebands
(zeroth-order,±1-order), the fraction-order sidebands (± 1

n -order), the
sum and difference sidebands (± n±1

n -order).

db̂
dt
=−(iωb + γ )b̂ − ig â †â +

√
2γ b̂in, (3)

where 1a =ωa −ωc is the frequency detuning between
the control field ωc and the cavity field ωa . δp =ωp −ωc
(δ f =ωf −ωc ) is the frequency detuning between the control
field ωc and the probe field ωp (ωf ). γ is the mechanical damp-
ing rate. â in and b̂in are, respectively, the fluctuation operations
corresponding to the cavity mode and the mechanical mode
with zero mean value, i.e., 〈â in〉 = 〈b̂in〉 = 0. In this Letter, we
focus on the mean response of the system to the probe fields;
thus, in the following, we turn to calculate the evolution of
the expectation values of the system operators â and b̂, and we
denote 〈â〉 ≡ α, 〈b̂〉 ≡ β. By using the mean-field approxima-
tion, i.e., 〈â b̂〉 = 〈â〉〈b̂〉, the dynamical equations of the system
can be derived from Eqs. (2) and (3) as

dα
dt
=−(i1a + κ)α − igα(β + β∗)

+ εc + εp e−iδp t
+ ε f e−iδ f t , (4)

dβ
dt
=−(iωb + γ )β − ig |α|2. (5)

We recall that the solutions to the above nonlinear equations
have been addressed in previous works for the following three
parametric conditions: (i) ε f = 0, εp 6= 0, εp/εc � 1; under
this circumstance, the equations can be solved by using the
so-called linearization method, and the Stokes and anti-Stokes
processes are discussed [21]. (ii) ε f 6= 0, εp 6= 0, εp/εc �

1, ε f /εc � 1; in this case, the linearization is practicable, and
the sum and difference sideband effects are investigated [22,23].
(iii) ε f = 0, εp 6= 0, εp ∼ εc ; in this regime, the linearization
is inapplicable, and the high-order sideband effect is studied by
using numerical calculation [16].

In this Letter, we study the fourth circumstance,
i.e., εp 6= 0, ε f 6= 0, ε f ∼ εp ∼ εc . Different from the pre-
vious cases, here the expectation value x (x = α, β) is written
as the following ansatz: x = x0 + x p + x f + xs + xd , where
x0 denotes the steady-state solution when εp = ε f = 0. The
optomechanical nonlinearity [corresponding to the terms
−ig |α|2 and −igα(β∗ + β)] will result in the generation of
new photons with different frequencies. When the laser fields
are incident upon the cavity, the driving energy will be trans-
ferred to a series of sidebands with new frequencies, which can
be expressed as

x p =

N∑
j=1

x ( j )
p+e−i jδp t

+ x ( j )
p−e i jδp t , (6)

x f =

M∑
k=1

x (k)f+e−ikδ f t
+ x (k)f−e ikδ f t . (7)

Similar to the sum and difference frequency generations in the
nonlinear medium [24], a series of sum and difference sidebands
can be generated in our optomechanical system, which are
written as

xs =

N∑
j=1

M∑
k=1

x ( j ,k)
s+ e−i( jδp+kδ f )t + x ( j ,k)

s− e i( jδp+kδ f )t , (8)
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xd =

N∑
j=1

M∑
k=1

x ( j ,k)
d+ e−i( jδp−kδ f )t + x ( j ,k)

d− e i( jδp−kδ f )t . (9)

By solving Eqs. (4) and (5) with the help of the ansatz, and
using the input–output relation [25] Sout = Sin −

√
2κα

(Sin = εc + εp e−iδp t
+ ε f e−iδ f t ), we can finally obtain the out-

put spectrum of the system: Sout = S0 + S p + S f + Ss + Sd ,
in which we have assumed that the detunings between the probe
fields and the control field satisfy: (i) δp =ωb ; (ii) δ f =ωb/n
(n is an integer). It should be noted that the spectra obtained
have shifted the frequency ωc , because Eqs. (4) and (5) describe
the evolution of the optical field in a frame rotating at the con-
trol frequency. The output spectrum includes the following five
parts, as shown in Fig. 1(b): the first part S0 = εc −

√
2κα0 is

the zeroth-order sideband, which corresponds to the control
field ωc . The second and third parts denote the integer- and
fraction-order sidebands, respectively, which can be expressed as

S p =

N∑
j=1

A( j )
p+e−i jωb t

+ A( j )
p−e i jωb t , (10)

S f =

M∑
k=1

A(k)f+e−i k
n ωb t
+ A(k)f−e i k

n ωb t , (11)

and we will see a series of sidebands appear at ω=± jωb and
ω=± k

nωb , in which A(1)p+ and A(1)f+ are called the first- and 1
n -

order sidebands, which correspond to the probe fieldωp andωf ,
respectively. The fourth and fifth parts describe the sum and
difference sidebands, respectively, which are given by

Ss =

N∑
j=1

M∑
k=1

A( j ,k)
s+ e−i j n+k

n ωb t
+ A( j ,k)

s− e i j n+k
n ωb t , (12)

Sd =

N∑
j=1

M∑
k=1

A( j ,k)
d+ e−i j n−k

n ωb t
+ A( j ,k)

d− e i j n−k
n ωb t . (13)

That means a series of new fraction-order sidebands will appear
at ω=± j n±k

n ωb , and we call A( j ,k)
s± and A( j ,k)

d± as the ± j n+k
n -

and ± j n−k
n -order sidebands, respectively.

It can be seen that it is very difficult and tedious to give
the analytical solutions to the sidebands for every order. To
verify our theory and exhibit all the generated sidebands, a
more convenient practice is to use numerical calculation, and
we adopt the Runge–Kutta method to solve Eqs. (4) and (5),
then the output spectrum can be obtained by using the fast
Fourier transform. The used parameters are chosen based
on a recent experiment [26] and can be achieved under cur-
rent technology: ωb/2π = 51.8 MHz and γ /2π = 41 kHz
(quality factor Qm = 1.26× 103), m = 20 ng, 1a =ωb ,
κ/2π = 15 MHz, g /2π = 1 kHz, the wavelength of the
control fieldλc = 795 nm, and εc = 3× 103 GHz.

To exhibit the sideband generation output from the sys-
tem, we first assume that ε f = 0 and show the integer-order
(high-order) sideband spectra in Fig. 2. We can see that when
εp is weak (εp/εc = 3× 10−2), there are only zeroth-order and
±1-order sidebands in the output spectrum. If we increase εp

Fig. 2. Integer-order sideband spectra for different εp : (a) εp = 9
GHz, (b) εp = 3× 103 GHz, and the other parameters are stated in
the text.

and when εp is strong (εp/εc = 1), the amplitudes of±1-order
sidebands are strengthened, and the higher integer-order side-
bands appear, the positive and negative sidebands end up at the
orders of +8 and −6, respectively. Furthermore, for a higher
order of the sideband, the amplitude is smaller. In general,
both the cutoff-order number and the amplitude will gradu-
ally increase with the increasing of εp . However, the sideband
interval does not change and is alwaysωb .

Below we show the integer-order and fraction-order sideband
spectra for different n, as shown in Fig. 3. We consider that
another probe field ωf is inputted into the cavity with a very
small amplitude (ε f /εc = 3× 10−3), and the other conditions

Fig. 3. Integer-order and fraction-order sideband spectra for differ-
ent n: (a) n = 10, (b) n = 5, and (c) n = 2. ε f = 9× 10−1 GHz, and
the other parameters are the same as those in Fig. 2(a).



5172 Vol. 45, No. 18 / 15 September 2020 /Optics Letters Letter

Fig. 4. Higher integer-order, fraction-order, sum and differ-
ence sideband spectra for different ε f : (a) ε f = 9× 101 GHz,
(b) ε f = 6× 102 GHz, and (c) ε f = 1.2× 103 GHz. n = 10, and the
other parameters are the same as those in Fig. 2(b).

are the same as in Fig. 2(a). It can be seen that the integer-order
sidebands have hardly changed, while two new fraction-order
sidebands appear, and their positions depend on n. Especially
when n = 2, the newly generated ± 1

2 -order sidebands and the
pre-existing zeroth-order and ±1-order sidebands constitute a
series of new equidistant sidebands, and the sideband interval
becomes half of the mechanical frequency.

Figure 4 displays the higher integer-order, fraction-order,
sum and difference sideband spectra for different ε f , and
the other conditions are the same as in Fig. 2(b). When
ε f /εc = 3× 10−2, the amplitudes of ± 1

10 -order sidebands
are obviously enhanced compared with those in Fig. 3(a), and
the sum and difference sidebands between ± 1

10 -order and
the integer-order sidebands, such as ± 11

10 -order, ± 9
10 -order,

±
19
10 -order, ± 21

10 -order sidebands, etc., appear in the output
spectrum. Furthermore, the higher fraction-order sidebands,
such as ± 2

10 -order sidebands, come out, and the sum and dif-
ference sidebands between ± 2

10 -order and the integer-order
sidebands can also be seen, e.g., ± 18

10 -order, − 22
10 -order side-

bands, etc. When ε f /εc = 2× 10−1, there are more higher
fraction-order sidebands, such as ± 4

10 -order sidebands, and
more sum and difference sidebands, such as − 26

10 -order and
46
10 -order sidebands. If we continue to increase ε f and when
ε f /εc = 4× 10−1, it can be seen that more sum and difference
sidebands appear, e.g., − 56

10 -order and 75
10 -order sidebands. In

this case, the sideband range is approximately equal to that in
Fig. 2(b), while the sideband interval is decreased by one order of
magnitude.

In summary, this Letter proposed a new kind of sideband,
i.e. the fraction-order sideband, which can be generated in
an optomechanical system driven by a control field (ωc ) and
two probe fields (ωp , ωf ), where the detuning between ωc and
ωp (ωf ) is equal to the mechanical frequency ωb(ωb/n). The
most significant advantage of fraction-order sidebands is that
they can enable us to decrease the sideband interval by increas-
ing n. We conclude that the challenge to achieve a tunable
optical frequency comb based on the optomechanical system
will be greatly aided by our work.
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