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A compact scheme for the generation of path-polarization entangled photon pairs is proposed
by using a quasi-periodic nonlinear photonic crystal to simultaneously accomplish four spon-
taneous parametric down-conversion processes. Moreover, we report experimental scheme to
measure the polarization entanglement and path entanglement separately and theoretically get
numerical results that verify some predictions about the hyperentanglement. This method can
be expanded for the generation of multi-partite and two-photon path-polarization hyperentan-
glement in a single quasi-periodic nonlinear photonic crystal structure. This compact quantum
light source can be used as a significant ingredient in quantum information science.

INTRODUCTION

Entanglement plays a key role in the applications of quantum information science such as quantum crytography1,
quantum teleportation2 and dense coding3. Consequently, to create and manipulate entanglement using an integrated
quantum light source has been a defining experimental goal in recent years.

One solid strategy resorts to quasi-phase matching (QPM) of spontaneous parametric down-conversion (SPDC)
processes4 in a designed nonlinear photonic crystal (NPC) since it avoids bulky and complex experimental elements.
This method has been applied to create some kinds of entanglements such as two-photon polarization entanglement5,
single-photon entanglement6, path entanglement7, etc. However, the NPCs used in these schemes are periodic. One
limitation is that they are usually used to phase match only processes whose mismatch vectors are integer multiples
of a single vector (in 1D case) or a vectorial sum of only two base vectors (in 2D case). Consequently, a single periodic
NPC structure is not usually used to simultaneously phase match multiple SPDCs. So we adopt the engineering of
quasi-periodic NPCs8,9, which provides greater design flexibility for phase matching several different SPDCs and thus
provides more possibilities in entanglement generation.

We are inspired by the notion of hyperentanglement10, which refers to the entanglement at multiple degrees of
freedom (DOFs) such as polarization, frequency, energy time, etc. Specifically, we focus on producing hyperentan-
glement at the polarization and spatial mode by using a single designed quasi-periodic NPC to phase match several
SPDCs. This method not only incorporates the many applications of path-entanglement including quantum precise
phase measurement11, super-resolution quantum lithography11, and encoding of multilevel systems in spatial mode
of single photon12,13, but also expands the Hilbert space, thereby provides advantages in many parts of quantum in-
formation science such as enlarging the channel capacity in super dense coding14, enhancing the security of quantum
crytography15,16 and assisting complete Bell-state discrimination17,18. Moreover, theoretically, this method enables to
create multiple spatial modes (larger than two) in the path-polarization hyperentanglement in a single quasi-periodic
NPC instead of using different cascaded periodic NPCs as in some generation schemes of path entanglement7. So this
method can be seen as a more compact scheme.

This paper is arranged as follows. In results, we describe the generation of path-polarization hyperentangled
photon pairs by using QPM of 4 SPDC processes in a designed quasi-period NPC. The design parameters of the
NPC, its structure and its Fourier transform are given. The experimental setup is given which incorporates Hong-Ou-
Mandel quantum inference measurements19,20. As to this setup, numerical simulation results are given which verify
our predictions about the hyperentanglement. In discussion, we discuss how the basic model can be expanded for
the generation of multi-partite and two-photon path-polarization hyperentanglement. In method, we introduce the
principle of designing the crystal.
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RESULTS

Generation of path-polarization hyperentangled photon pairs. The schematic for the generation of path-
polarization hyperentangled photon pairs is displayed in Fig.1. We have a pump photon with the frequency of ωp
injected into the designed NPC—in which it will get through either of the 4 SPDC processes— and the signal and
idler photons with frequency ωp/2 are assumed to be generated in our engineering. From an intuitive perspective,
the signal and idler photons are firstly polarization entangled; and since they come out from either of the two spatial
modes shown in Fig.1(a), they are also path entangled.
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Figure 1. (a) Schematic for the generation of path-polarization hyperentangled photon pairs. NPC is designed to
qusi-phase-matching 4 SPDC processes. The pump photon with frequency of ωp is injected into the designed NPC and gets
through either of the 4 SPDC processes. Consequently, in our engineering, the path-polarization hyperentangled signal and
idler photon with frequency of ωp/2 should be emitted from the NPC. (b) QPM condition for the 4 SPDC processes in
generation of path-polarization hyperentangled photon pairs.

The NPC displayed in Fig.1(a) is designed to simultaneously accomplish QPM of the 4 different SPDC processes.
The QPM condition can be depicted by Fig.1(b). kpo represents the wave vector of the pump light (o light); ks1o(e),
ki1e(o), ks2o(e) and ki2e(o) represents the wave vectors of Signal1 (o light or e light), Idler1 (e light or o light), Signal2
(o light or e light) and Idler2 (e light or o light) respectively. The mismatch vectors are described as

∆k1o(e) = kpo − ks1o(e) − ki1e(o)

∆k2o(e) = kpo − ks2o(e) − ki2e(o)
(1)

To illustrate our design method we have proposed, we are going to take an example with specific parameter values.
It must be noted that, these specific parameter values are just used to justify our theory in calculation, maybe the
values are not suitable for a realistic case. However, if necessary, we can design the lattice with appropriate parameter
values in any realistic case, including wavelength, temperature, directions of the wave vectors and so on. Thus there
is no loss of generality.

we consider a very typical laser, Nd:YAG laser, whose wavelength is 532nm. Now we set the wavelength of the
pump light as 532nm and that of the signal and idler light is 1064nm. The direction of the wave vectors of beams
kpo,ks1o(e),ki1e(o),ks2o(e),ki2e(o) are 0◦, 58◦,−58◦, 74◦,−74◦ respectively. Periodically poled lithium niobat (PPLN) is

chosen as the NPC material and the working temperature is 21◦C. We adopt sellmeier equations under this condition21

and figure out the mismatch vectors as

∆k1e = (13.708, 0.384)µm−1

∆k1o = (13.708,−0.384)µm−1

∆k2e = (20.296, 0.435)µm−1

∆k2o = (20.296,−0.435)µm−1

(2)

Through engineering of the PPLN NPC8,9 to accomplish QPM of the mismatch vectors, the structure of PPLN
NPC is depicted by Fig.2(a) and the tiling vectors shown in Fig.2(a) are

a(1) = (7.87,−46.67)µm

a(2) = (7.87, 46.67)µm

a(3) = (17.33,−55.03)µm

a(4) = (17.33, 55.03)µm

(3)
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(a) (b)

Figure 2. (a) Structure of the PPLN NPC. Scale is in µm, drawn with an aspect ratio of approximately 1:25.

The arrows indicate the four tiling vectors a(i) (i=1,2,3,4). Note that for clarity the PPLN NPC structure is partially depicted
and the total area is 50µm × 700µm. (b) Fourier transform G(k) of the PPLN NPC. Scale is in µm−1. The arrows
indicate the mismatch vectors ∆k1e,∆k1o,∆k2e,∆k2o.

Each red dot with radius of 1µm in Fig.2(a) is called motif9. Fig.2(a) actually depicts the distribution of nonlinear
coefficient χ(2) in the PPLN NPC, which is obtained by the convolution between the quasi-periodic lattice and motif.
In the motif (red dot) χ(2) = 1 while χ(2) = −1 in other areas of the PPLN NPC. We can also express the PPLN
NPC structure mathematically as g(r) = a(r) × (u(r) ⊗ s(r)), where a(r) denotes the total area of the PPLN NPC,
u(r) is a sum of delta functions and denotes the lattice function, s(r) denotes the motif function, ⊗ is convolution
operator. The Fourier transform of the PPLN NPC determines the conversion efficiency of the SPDC processes and
can be written as8,9

G(k) = FT{g(r)} = U(k)⊗A(k)× S(k) = ∆χ(U(k)⊗
∫
a(r)

eik·rd2r)

∫
s(r)

eik·rd2r

= 2SA∆χ
J1(kR)

kR
{U(k)⊗ [sinc(

kxLx
2

)sinc(
kyLy

2
)]},

(4)

where k = |k|, kx, ky indicate the x and y components of k, ∆χ is the absolute difference between the positive

and negative values used for χ(2), J1 is the first Bessel function, S is a circle of radius R = 1µm, A is a rectangle
of sides Lx × Ly—which indicates the total area of PPLN NPC (Lx = 0.5mm,Ly = 2.5mm in our engineering),
U(k) is the Fourier transform of lattice function u(r) and is the sum of delta functions. Fig.2(b) depicts the Fourier
transform of the PPLN NPC. We can clearly distinguish Bragg peaks at the positions of the required mismatch vectors
∆k1e,∆k1o,∆k2e,∆k2o, while there are no Bragg peaks at unwanted positions—which shows desirable conversion
efficiency of SPDC processes in this PPLN NPC. Near the required mismatch vectors, the Fourier transform can also
be written as

G(k) = Gje(o)(k−∆kje(o)) = Gje(o)(∆k) = 2SA∆χ
J1(∆kje(o)R)

∆kje(o)R
[U(∆kje(o))sinc(

∆kxLx
2

)sinc(
∆kyLy

2
)], (5)

where j=1,2, ∆k = k − ∆kje(o), ∆kje(o) = |∆kje(o)|, ∆kx and ∆ky indicate the x and y components of ∆k. Note
here that if more spatial modes are introduced–which implies more SPDC processes to achieve–we can prevent the
decrease of SPDC efficiency by promoting the size of our designed PPLN

Under the first-order perturbation approximation22, through the QPM of 4 SPDC processes in the designed PPLN
NPC, the two-photon state can be written as

|ψ〉 = α0

2∑
k=1

∫
dυ[φkeo(υ)â†ske(

ωp
2

+ υ)â†iko(
ωp
2
− υ) |0〉+ φkoe(υ)â†sko(

ωp
2

+ υ)â†ike(
ωp
2
− υ) |0〉], (6)

α0 in the equation is a normalization constant. Subscript eo and oe indicate the polarization of the signal and idler
photons. Subscript k represents the spatial mode. The numerical two-photon mode function φkeo(υ) and φkoe(υ) can
be obtained from the Fourier transform of the PPLN NPC near the required mismatch vectors which is expressed by
Eq.5 (φkeo(υ) = Gke(∆k), φkoe(υ) = Gko(∆k)). And the relationship between the detuning frequency υ and ∆k is
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∆kx = υ[
cos θske(o)
uge(o)

−
cos θiko(e)
ugo(e)

] +
υ2

2
[cos θske(o)

d

dω
(

1

ue(o)
)|ω=

ωp
2

+ cos θiko(e)
d

dω
(

1

uo(e)
)|ω=

ωp
2

],

∆ky = υ[
sin θske(o)
uge(o)

−
sin θiko(e)
ugo(e)

] +
υ2

2
[sin θske(o)

d

dω
(

1

ue(o)
)|ω=

ωp
2

+ sin θiko(e)
d

dω
(

1

uo(e)
)|ω=

ωp
2

],

(7)

where θske(o) indicates the angle between kske(o) and x axis, θiko(e) indicates the angle between kiko(e) and x axis,

uge(o) = dω
dke(o)

|ω=ωp/2 is group velocity of the signal or idler (e light or o light). Eq.6 can be simplified and written as

|ψ〉 = (C1
eo |HV 〉+ C1

oe |V H〉)|1〉s1 |1〉i1 |0〉s2 |0〉i2 + (C2
eo |HV 〉+ C2

oe |V H〉)|0〉s1 |0〉i1 |1〉s2 |1〉i2 , (8)

where C1
eo = C1

oe = 0.483, C2
eo = C2

oe = 0.516, and (C1
eo)

2 + (C1
oe)

2 + (C2
eo)

2 + (C2
oe)

2 = 1.

This is aptly the required path-polarization hyperentanglement. Note that it is significant to match the efficiency
of SPDC processes of different spatial modes because it will achieve maximally entangled states. However to date,
there is no general design methods available to achieve this condition which means that this condition can only be
achieved in some selected cases of us.

We design an experimental scheme and the criterions23 to verify the path and polariztion entanglement separately.
The experiment setup is shown in Fig.3.
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Figure 3. Experimental setup which is used to verify path and polarization entanglement. BS1 and BS2 are beam
splitters with transmission coefficient T = 0.5. To verify path and polarization entanglement, we collect coincidence counting
from detectors while adjusting prisms and polarizers.

In Fig.3, Ê
sk

and Ê
ik

(k = 1, 2) stand for the signal and idler light fields generated from SPDC processes in the
PPLN NPC. They are expressed as

Êsk
(tsk) =

1√
2π

∫
dυ(φkeo(υ)â†ske(ωp/2 + υ) + φkoe(υ)â†sko(ωp/2 + υ))e−i(ωp/2+υ)tsk , (9)

Ê
ik

(tik) =
1√
2π

∫
dυ(φkeo(υ)â†ike(ωp/2− υ) + φkoe(υ)â†iko(ωp/2− υ))e−i(ωp/2−υ)tik . (10)

The phase relation, β1 between s1, s2 and β2 between i1, i2, can be set by tilting two prisms. And we have Êb1 =

eiβ1Ês2 ,Êb2 = Ês1 ,Êb3 = eiβ2Êi1 ,Êb4 = Êi2 . Generally, in Heisenberg picture, the evolution of operators in a BS is
expressed as

Ê
(1)
out =

√
TÊ

(1)
in +

√
RÊ

(2)
in , (11)

Ê
(2)
out =

√
TÊ

(2)
in −

√
RÊ

(1)
in . (12)
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The evolution of operators in BS1 and BS2 can be expressed as

Êc1 =
1√
2

(Êb1 + Êb2), (13)

Êc2 =
1√
2

(Êb1 − Êb2), (14)

Êc3 =
1√
2

(Êb3 + Êb4), (15)

Êc4 =
1√
2

(Êb3 − Êb4). (16)

where j = 1, 2. Without loss of generality, we show theoretically the detected result atD1,D2 after classical interference
at BS1 and D3,D4 after classical interference at BS2. The polarizers are temporarily removed so that all polarization
components are included. To verify the path entanglement, the coincidence count of detectors D1 and D3 is measured,
which is proportional to the expected value of the opeartor Êc3(ti)Êc1(ts)Ê

†
c1(ts)Ê

†
c3(ti).

〈Êc3(ti)Êc1(ts)Ê
†
c1(ts)Ê

†
c3(ti)〉 = 〈ψ| Êc3(ts)Êc1(ti)Ê

†
c1(ts)Ê

†
c3(ti) |ψ〉 = T1 + T2 + T3 + T4, (17)

where

T1 =
1

16π2
α2
0

∫
(dυ)

4
[(φ1eo(υ))

3
+ (φ1oe(υ))

3
]2,

T2 =
1

16π2
α2
0

∫
(dυ)

4
[(φ2eo(υ))

3
+ (φ2oe(υ))

3
]
2
,

T3 =
1

16π2
α2
0

∫
(dυ)

4
[(φ1eo(υ))

3
+ (φ1oe(υ))

3
][(φ2eo(υ))3 + (φ2oe(υ))3]ei(ωp/2+υ)(ts1−ts2+2β1/ωp)+i(ωp/2−υ)(ti1−ti2−2β2/ωp),

T4 =
1

16π2
α2
0

∫
(dυ)

4
[(φ1eo(υ))

3
+ (φ1oe(υ))

3
][(φ2eo(υ))3 + (φ2oe(υ))3]e−i(ωp/2+υ)(ts1−ts2+2β1/ωp)−i(ωp/2−υ)(ti1−ti2−2β2/ωp).

(18)

Here we introduce a phase difference ∆ts = ts1 − ts2 , ∆ti = ti1 − ti2 . After submitting the numerical two-photon
mode function to Eq.18, approximately we have

C(c1, c3) ∝ 1.02 + cos(ωp/2 · (∆ts −∆ti) + β1 − β2). (19)

We can get coincidence counts of (D1, D4), (D2, D3) and (D2, D4) by the same method. The expected coincidence
count can be written as

C(c1, c4) ∝ 1.02− cos(ωp/2 · (∆ts −∆ti) + β1 − β2), (20)

C(c2, c3) ∝ 1.02− cos(ωp/2 · (∆ts −∆ti) + β1 − β2), (21)

C(c2, c4) ∝ 1.02 + cos(ωp/2 · (∆ts −∆ti) + β1 − β2). (22)

The entangled state |ψ〉 can be adoped to test the violation of a Bell inequality24 with ∆ts = ∆ti = 0. The
parameter Sk is expressed as

Sk = |E(β1, β2)− E(β1, β2
∗) + E(β1

∗, β2) + E(β1
∗, β2

∗)|. (23)

where

E(β1, β2) =
C(c1, c3) + C(c2, c4)− C(c1, c4)− C(c2, c3)

C(c1, c3) + C(c2, c4) + C(c1, c4) + C(c2, c3)
. (24)

Two photon coincidence can be measured by using the phase setting β1 = 0, β1
∗ = π

2 and β2 = π
4 ,β2

∗ = 3π
4 . The

expected value, Sk = 2.357 > 2, verifies the path entanglement between s1, i1 and s2, i2.
Then we discuss the measurement of polarization entanglement25. The evolution of operators in Polarizer1 and

Polarizer2 can be written as

Ê
′

c1 = Êc1(e) cos(θ1) + Êc1(o) sin(θ1), (25)

Ê
′

c3 = Êc3(e) cos(θ2) + Êc3(o) sin(θ2). (26)
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where Êck(e), Êck(o) (k=1,3) indicate the orthonormal polarization components of Êck . To verify the polarization
entanglement, the Coincidence Counting of detectors D1 and D3 is measured, which is proportional to the expected
value of the operator Ê

′

c3(ti)Ê
′

c1(ts)Ê
†′
c1(ts)Ê

†′
c3(ti). We have

〈Ê
′

c3(ti)Ê
′

c1(ts)Ê
†′
c1(ts)Ê

†′
c3(ti)〉 = 〈ψ| Ê

′

c3(ts)Ê
′

c1(ti)Ê
†′
c1(ts)Ê

†′
c3(ti) |ψ〉 = W1 +W2 +W3 +W4, (27)

where

W1 =
1

16π2
α2

0

∫
(dυ)4[(φ1

eo(υ))
3

cos(θ1) sin(θ2) + (φ1
oe(υ))

3
sin(θ1) cos(θ2)]2,

W2 =
1

16π2
α2

0

∫
(dυ)4[(φ2

eo(υ))
3

cos(θ1) sin(θ2) + (φ2
oe(υ))

3
sin(θ1) cos(θ2)]

2
,

W3 =
1

16π2
α2

0

∫
(dυ)4[(φ1

eo(υ))
3

cos(θ1) sin(θ2) + (φ1
oe(υ))

3
sin(θ1) cos(θ2)][(φ2

eo(υ))3 cos(θ1) sin(θ2)

+ (φ2
oe(υ))3 sin(θ1) cos(θ2)]ei(ωp/2+υ)(∆ts+2β1/ωp)+i(ωp/2−υ)(∆ti+2β2/ωp),

W4 =
1

16π2
α2

0

∫
(dυ)4[(φ1

eo(υ))
3

cos(θ1) sin(θ2) + (φ1
oe(υ))

3
sin(θ1) cos(θ2)][(φ2

eo(υ))3 cos(θ1) sin(θ2)

+ (φ2
oe(υ))3 sin(θ1) cos(θ2)]e−i(ωp/2+υ)(∆ts+2β1/ωp)−i(ωp/2−υ)(∆ti+2β2/ωp).

(28)

Submit the numerical two-photon mode function, the result can be expressed as

〈Ê
′

c3(ti)Ê
′

c1(ts)Ê
†′
c1(ts)Ê

†′
c3(ti)〉 ∝ [1.02 + cos(ωp/2 · (∆ts + ∆ti) + β1 + β2)] sin2(θ1 + θ2). (29)

Note here that the effect of Prism1 and Prism2 (β1 and β2) can be used to compensate for the phase difference
between the signal photons (∆ts) and that between idler photons (∆ti). Specifically, we need to adjust Prism1(Prism2)
until the classical interference at BS1(BS2) results in a peak detected intensity at D1(D2). After phase difference
compensating, when θ2(θ1) = 0, the relation between Coincidence Counting of D1, D2 and θ1(θ2) can be depicted
by Fig.4(a)—in which the interference fringes with visibility of 100% prove the polarization entanglement. We use
∆γ1 and ∆γ2 to represent transmission errors of BS1 and BS2. Moreover, if transmission error of BS is taken into
account, we have the transmission coefficient of BS1 to be sin(π/4 + ∆γ1), and that of BS2 to be sin(π/4 + ∆γ2).
Consequently, W ′1 = 2 cos2(π/4 + ∆γ1) sin2(π/4 + ∆γ2)W1, W ′2 = 2 cos2(π/4 + ∆γ2) sin2(π/4 + ∆γ1)W2, W ′3 =
2 cos(π/4 + ∆γ1) cos(π/4 + ∆γ2) sin(π/4 + ∆γ1) sin(π/4 + ∆γ2)W3, W ′4 = 2 cos(π/4 + ∆γ1) cos(π/4 + ∆γ2) sin(π/4 +
∆γ1) sin(π/4 + ∆γ2)W4. W1 and W2 (W3 and W4) are affected by the same manner.

Fig.4(b) and Fig.4(c) depict the relation between normalized coincidence counting and angular settings of polarizers
and shows the visibility, V = 1. Two photon coincidence counting can be measured by using the angular setting θ1 = 0,
θ1
∗ = π

4 and θ2 = π
8 ,θ2

∗ = 5π
8 . The expected value, Sk = 2.828 > 2, verifies the polarization entanglement between

signal and idler.
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Figure 4. (a) Coincidence counting of D1,D3(D2,D4) and D1,D4(D2,D3) with respect to phase modulation(β1 − β2). (b)
Coincidence counting of D1 and D3 with respect to modulation of Polarizer1 (θ1). (c) Coincidence counting of D1 and D3 with
respect to modulation of Polarizer2 (θ2).

DISCUSSION

Multi-partite and two-photon path-polarization hyperentanglement. Eq.8 illustrates the proposed path-
polarization hyperentanglement. This is a basic 4-SPDC model and some adjustments to the NPC engineering will
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Figure 5. (a) The QPM condition for 8-partite path-polarization hyperentanglement. (b) The QPM condition for two-photon
path-polarization hyperentanglement.

give new forms to the hyperentanglement. For example, if the engineering of NPC incorparates 8 SPDC processes
instead of 4, the QPM condition can be illustrated by Fig.5(a). And the result is that the number of spatial modes
becomes 4 instead of 2, which implicates that the path entanglement part in the hyperentanglement changes from
4-partite to 8-partite. It can be described as

|ψ〉 = (C1
eo |HV 〉+ C1

oe |V H〉)|1〉s1 |1〉i1 |0〉s2 |0〉i2 |0〉s3 |0〉i3 |0〉s4 |0〉i4
+ (C2

eo |HV 〉+ C2
oe |V H〉)|0〉s1 |0〉i1 |1〉s2 |1〉i2 |0〉s3 |0〉i3 |0〉s4 |0〉i4

+ (C3
eo |HV 〉+ C3

oe |V H〉)|0〉s1 |0〉i1 |0〉s2 |0〉i2 |1〉s3 |1〉i3 |0〉s4 |0〉i4
+ (C4

eo |HV 〉+ C4
oe |V H〉)|0〉s1 |0〉i1 |0〉s2 |0〉i2 |0〉s3 |0〉i3 |1〉s4 |1〉i4 .

(30)

Theoretically, if multiple paths are established, multi-partite path-polarization entanglement can be generated. More-
over, if there are still 4 designed SPDC processes but the signal and idler are designed to be emitted from the same
path, the QPM condition can be illustrated by Fig.5(b).

METHOD

Designing a proper crystal is a key point for phase matching 4 SPDC processes. A general method to design
frequency converters that will phase match any set of interacting waves is provided by the so-called generalized dual
grid method (DGM)9. In this method, a dual structure, called the dual grid, which contains all the topological
information required to built the quasi-crystal is first constructed. Then, using a simple transformation, this dual grid
is transformed to a quasi-crystal. The Dual Grid Method can be adapted to match different processes. For different
processes, the only thing you need to do is changing the mismatch vectors. Moreover, the Dual Grid Method could
be implemented by a computer program, which is convenient to design a crystal.
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