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Effect of the External Coupling Rate

Fix g, γ and ϵ and vary the γc/γ ratio. We plot
the minimum of the variances versus the anal-
ysis frequency normalized to γ when γc takes a
portion of 0.34, 0.57, 0.8, 1 of the total damping
rate. The blue dashed lines stand for S(1), while
the green solid ones stand for S(3).
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•The entanglement among output modes are im-
proved as the γc/γ ratio increase, i.e., the en-
tanglement is better when the cavity has higher
Q therefore lower intracavity loss, and higher
extracavity coupling coefficient.

•This can be interpreted naturally if we see the
coupling as a beam splitter which extract squeezed
quantum noise to the output, so the higher por-
tion the coupling coefficient takes in the to-
tal damping rate, the less consumed entangled
pair of photons are wasted in the internal loss.

Effect of the Pump Power We plot the min-

imal variance throughout the noise power spec-
trum as a function of the pump power (normal-
ized by ϵth)) and six typical spectrums.
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•Both variance first descend as the pump power
increases, then ascend. S(3) and S(4) reaches
their global minimum at ϵ = 1.15ϵth, therefore
1.15ϵth is the optimal pump power.

•The other turning point is around 1.1ϵth, when,
as we can see in Fig. (b) and (c), the variances
in the center frequency begin to decrease dra-
matically and become the minimum which was
once achieved in the side band, as showed in
Fig. (a).

ϵth is the threshold of pump. Only when the
pump power is above this threshold will the rest
of the comb components appears.
Quantum fluctuation correlation With the

steady-state solution, we can find the equations
of motion governing the quantum fluctuations
of the comb modes as

∂

∂t
δα = Mδα +Bη, (14)

where δα = [δαp, δαs1, δαi1, δαs2, δαi2,H.c.]T.
M is the drift matrix which is defined in Ref.[5].
The fluctuation equations describe an Ornstein-
Uhlenbeck process for which the intracavity spec-
tral correlation matrix is

S(ω) = (−M + iωI)−1D(−MT − iωI)−1.(15)

All the correlations required to study the mea-
surable extracavity spectra are then contained in
this intracavity spectral matrix.
In order to investigate the multipartite entangle-
ment, we define quadrature operators for each
mode as

Xk = ak + a†k, Yk = −i(ak − a†k), (16)

with a commutation relationship of [Xk, Yk] =
2i. Based on such definition, V (Xk) ≤ 1 will in-
dicate a squeezed state, where V (A) =

〈
A2

〉
−

⟨A⟩2 denotes the variance of operator A. Ac-
cordingly, by use of Eq. (7), the spectral vari-
ances and covariances of the output fields have
the general form

{
Sout
Xi

(ω) = 1 + 2γcSXi(ω)
Sout
Xi,Xj

(ω) = 2γcSXi,Xj(ω).
(17)

Similar expressions can be derived for the Y
quadratures.

Five-partite Entanglement
Criteria

The condition proposed by van Loock and Fu-
rusawa (VLF), which is a generalization of the
conditions for bipartite entanglement, is suffi-
cient to demonstrate multipartite entanglement.
We now demonstrate how these may be opti-
mized for the verification of genuine five-partite
entanglement in this system. Using the quadra-
ture definitions, the five-partite inequalities, which
must be simultaneously violated, are

S(1) = V (Xp +Xs1) + V (−Yp

+Ys1 + gi1Yi1 + gs2Ys2 + gi2Yi2) ≥ 4, (18)
S(2) = V (Xp +Xi1) + V (−Yp

+gs1Ys1 + Yi1 + gs2Ys2 + gi2Yi2) ≥ 4, (19)
S(3) = V (Xs1 −Xs2) + V (gpYp

+Ys1 + gi1Yi1 + Ys2 + gi2Yi2) ≥ 4, (20)
S(4) = V (Xi2 −Xi1) + V (gpYp

+gs1Ys1 + Yi1 + gs2Ys2 + Yi2) ≥ 4, (21)

where the gk (k = p, s1, s2, i1, i2) are arbitrary
real parameters that are used to optimize the vi-
olation of these inequalities. Due to the sym-
metry relation between signal and idler photons,
Eq. (18) and Eq. (19) are equivalent. So are
Eq. (20) and Eq. (21).

Numerical simulation and
discussion

Through careful calculation, we find that the ex-
tracavity entanglement is completely determined
by three independent parameters: ε/εth, γc/γ
and ω/γ.
From now on, we numerically calculate the val-
ues of VLF inequalities. The list of assump-
tions:

•Spherical CaF2 cavity. Refractive index n0 =
1.43, Kerr coefficient n2 = 3.2× 10−20 m2/W.

•The radius R of the microresonator is 2.5 mm,
corresponding to an effective mode volume of
V0 = 6.6× 10−12 m3.

•Light is critically coupled to the device with
a loaded quality factor Q0 = 3 × 109, corre-
sponding to a central modal bandwidth ∆ω0 =
γp ≈ 2π × 64 kHz)

•Pump wavelength λ0 = 1560.5 nm.

•Hamiltonian for the comb generation system
is found to be

H = Hfree +Hpump +Hint,(3)
Hfree = !

∑

k

ωka
†
kak,Hpump = i!ϵa†p + H.c.,(4)

Hint = i
g

2
!
∑

k

a†ka
†
kakak + ig!

∑

k ̸=t

a†ka
†
tatak

+ig!(a†s1a
†
i1a

2
p + a†s2a

†
i1as1ap + a†s1a

†
i2ai1ap

+a†s2a
†
pa

2
s1 + a†i2a

†
pa

2
i1) + H.c.,(5)

where k, t = p, s1, s2, i1, i2 and ϵ is the pump
field that enters the resonator which is described
classically because of its intense amplitude.

•Processes 2ωp → ωs2 + ωi2 and ωs1 + ωi1 →
ωs2 + ωi2 are neglected from our interaction
Hamiltonian because they play relatively mi-
nor roles compared to other terms due to larger
phase mismatch and the smaller intensities of
s1 and i1 compared to the pump.

•Damping term

Lkρ = γk(2akρa
†
k − a†kakρ− ρa†kak), (6)

in which ρ is the density matrix of the five
modes under consideration. γk = γk0 + γkc
stands for the damping rate of the loaded cav-
ity. We assume that the five comb modes ex-
hibit the same photon decay rate and the same
external coupling rate (γk = γ, γkc = γc, γk0 =
γ0, k = p, s1, s2, i1, i2), since their frequencies
are not far from each other.

• Input-output relations The output fields are de-
termined by the well-known input-output rela-
tions given as

bout − bin =
√
γa, (7)

where b is the boson annihilation operator for
the bath field outside the cavity.

Equations of Motion for the
Full Hamiltonian

The master equation for the five cavity modes
(with rotating-wave approximation ak → e−iωktak)

∂ρ

∂t
= − i

![Hpump +Hint, ρ] +
5∑

k=1

Lkρ. (8)

The master equation above can be converted into
the equivalent c-number Fockker-Planck equa-
tion in P representation, which can be written
as a completely equivalent stochastic differen-
tial equation as

∂α

∂t
= F +Bη, (9)

where α = [αp,αs1,αi1,αs2,αi2,α∗
p,α

∗
s1,α

∗
i1,α

∗
s2,α

∗
i2]

T,
and F = [f , f∗]T is the main part of the system’s
evolution.
Matrix B contains the coefficients of the noise
terms which is obtained through BBT = D in
which the diffusion matrix D is given in ref. [5]
In Eq. (9), η = [η1(t), η2(t), η3(t), η4(t), η5(t), c.c.]T,
where ηi are real noise terms characterized by
⟨ηi(t)⟩ = 0 and ⟨ηi(t)ηj(t)⟩ = δijδ(t− t′).

Linearized
Quantum-Fluctuation

Analysis
Decompose the system variables into their steady-
state (classical) values and quantum fluctuations
as αi = Ai + δαi.
Steady-state solution The steady state of the

comb generation can be found by setting ∂α/∂t
in Eq. (9) to be zero.

ϵth = γ
√

γ/g, (10)

Ap =
ε +

√
ε2 + (3γ3)/g

3γ
, (11)

Ai1 = As1 = Aa =
√

γ

4g
(1− γ

gA2
p

), (12)

Ai2 = As2 = Ab =
2gApA2

a

γ
. (13)

where “: ... :” stands for normal ordering and g
is coupling coefficient given as

g =
n2!ω2

0c

Vn2
0

, (2)

where n2 is nonlinear refractive index that char-
acterizes the strength of the optical nonlinearity,
n0 is the linear refractive index of the material, c
is the speed of light in the vacuum, and V is the
effective mode volume.

System model
•Optical frequency comb: An OFC is a light

source composed of equally spaced discrete
frequency components. Actual OFCs might
extend to an extremely broad band with hun-
dreds of frequency components, each of which
corresponds to a comb mode.

•Experimental scheme: We consider a generic
scheme of comb generation, where a continuous-
wave pump wave is launched into a microres-
onator to excite FWM process. The result-
ing frequency comb output from the cavity is
then separated into individual frequency com-
ponents for analysis.

•To generate OFCs via cascaded FWM processes:
In a high-Q microresonator, an intense pump
wave launched into a cavity mode would ex-
cite four-wave mixing processes among dif-
ferent cavity modes via the optical Kerr effect.
The iteration of degenerate and non-degenerate
FWM processes thus produce an optical fre-
quency comb, with a spectral extent determined
by the group-velocity dispersion of the device.

•The FWM process governing the comb gener-
ation originates from the optical Kerr effect.
With an electric field composed of five fre-
quency components, the interaction Hamilto-
nian of the Kerr effect is given by

V = !(g/2) : (ap+as1+ai1+as2+ai2+H.c.)4 :,
(1)

Introduction
•Quantum computation is expected to provide

exponential speedup for particular mathemati-
cal problems such as integer factoring and quan-
tum symtem simulation.

•The generation of a scalable cluster state, which
is a special multipartite entanglement[1], is the
main challenge of the one-way quantum com-
putation model.

•Optical frequency comb (OFC) is proved to
be capable of carrying cluster states, which
can be used to implement quantum informa-
tion processing[2], quantum teleportation network[3],
quantum cryptographic network[4].

•The conventional way to generate an OFC is
to use the mode-locked lasers that are usually
bulky, difficult to operate, and susceptible to
environmental perturbations.

• It is recently reported that OFCs can also be
generated from high-Q monolithic microres-
onators through cascaded four-wave mixing (FWM).

•Advantages: 1. compatibility with CMOS tech-
nologies; 2. longer life time thus more signif-
icant quantum effect.

•The multipartite quantum entanglement rela-
tionship between different comb modes gen-
erated from high-Q microresonators are yet to
be discovered.

•The purpose of our work [5] is to analyze the
five-partite entanglement between OFCs gen-
erated from high-Q microresonators.
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