
Contact information: Guangqiang He, Room 5-205 SEIEE Buildings, Department of Electronic Engineering, Shanghai JiaoTong University, Shanghai, PRC 200240 – Phone: 86-21-34204362 – Email: guangqianghe@gmail.com; Web: http://ccs.sjtu.edu.cn/
Acknowledgments: This research work is supported by the Natural Science Foundation of China (No: 60773085, 60970109, 60801051), and the NSFC-KOSEF International collaborative research funds (No: 60811140346, F01-2008-000-10021-0), and National 863 Plan of China (Grant No: 2009AA01Z257).

References
[1] Jingtao Zhang, Guangqiang He, and Guihua
Zeng, Phys. Rev. A 80, 052333(2009).

[2] Lijie Ren, Guangqiang He, and Guihua Zeng,
Phys. Rev. A 78, 042302(2008).

[3] Guangqiang He, Jingtao Zhang, and Guihua
Zeng, J. Phys. B 41, 215503(2008).

[4] Guangqiang He and Guihua Zeng, submitted.

A new measurement method
of entanglement degree of
CV entangled state

Parameter ! is defined as the ratio of single-mode
and coincidence widths of distributions which can
be found from single-mode and coincidence mea-
surements,
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whereΔ",Δ& are the quadrature amplitude and phase
wave packet widths, superscript (s) and (c) refer to
single-mode measurement and coincidence measure-
ment, subscript (1,2) refer to models 1 and 2.
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The parameter ! of CV entanglement pairs gener-
ated by NOPA is obtained
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= cosh 20, for / = 3, 4. (18)

The calculation shows that [4] the parameter ! is
same as both Schmidt number 1 and parameter 2
related with Reid’s method.

Quantum network using CV graph states

Variance decreased!

Application: Teleportation via cluster states

N*N M*N

Exploit the profit of using multiple-rail model

The optimization of linear teleportation

Quantum network using CV
graph state

Sufficient conditions for the usefullness of a graph
state (characterized by its adjacency matrix G) for
teleportation via each of four types of UVT [2, 3]:

(I) 0-*3(4∗) = 0-*3(4∗ 51 − 56 )

= 0-*3(4∗ −41 −46 )

(II) 0-*3(4∗) = 0-*3(4∗ 51 + 56 )

= 0-*3(4∗ −41 +46 )

(III) 0-*3(4∗) = 0-*3(4∗ −41 + 56 )

= 0-*3(4∗ 51 −46 )

(IV) 0-*3(4∗) = 0-*3(4∗ −41 − 56 )
= 0-*3(4∗ 51 +46)

(13)

Quantum network communication results:

(I,III)
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Several examples

Multiple-rail Model

Total variance decreased!
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Fig.3 Classification of five-mode unweighted graph
states that are not equivalent to each other under lo-
cal Clifford operators.

Application to five-mode unweighted graph
states

Applying the above criterion to every pair of five-
mode unweighted graph states with different adja-
cent matrices whose number is 728, we get 28 dif-
ferent graph states that are not LC equivalent, whose
graphs are shown in Fig.3. It is obvious that some of
the graphs in Fig.3 are isomorphic, but they cannot
be transformed into each other without exchanging
modes of different vertices. Here No.M(N) repre-
sents that there are N graph states that are equivalent
with graph state No.M under LC operations. In the
case of DV, DV graph states are LC equivalent if and
only if the graphs of the graph states are equivalent
under local complement operation. However, for the
case of CV, this rule is no longer available.
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Fig.2 Applying local complement on the node 4 of
the graph on the left, one can get the graph on the
right. However there does not exist local Clifford
operations to implement such transformation.

Matrix equation to determine the equiva-
lence between stabilizer states under LC op-
erations

The matrix equation determining whether two stabi-
lizer states are equivalent can be expressed as

⎧



⎨



⎩

41< += −41>42 −?42 = 0

<? − => = 5
∣>41 +?∣ = 0

(12)

where <, =, > and ? are diagonal matrices.

LC equivalence between stabilizer states and
weighted graph states for CV

A weighted graph state is described by a mathemat-
ical graph 4 = (@,A), i.e., a finite set of * vertices
@ connected by a set of edges A, where every edge
is specified by a factor Ω-B corresponding to the in-
teraction strength between the modes - and B.

C- = (:̂- −
∑

Ω-B"̂B) → 0 (10)

Corresponding stabilizer:

{4-(D) = exp(−/DC-) = E-(D)
∏

FB(Ω-BD)∣D ∈ ℝ}.
(11)

the generator matrix of a CV weighted graph state

can be expressed as Θ =

[

4
5

]

, with 4 a symmetri-
cal matrix standing for the adjacent matrix for the
weighted graph and 5 an *-order identity matrix.
Important: A stabilizer state is equivalent to a weighted
graph state under LC operations, the detailed proof
can be obtained in [1].

The stabilizer Θ1 and Θ2 are equivalent under LC
operation if and only if there exist G and 6 satisfy-
ing that

Θ2 = GΘ16, (9)

where6 is a 2*×2* invertible matrix standing for a
elementary column transformation and G stands for
the LC operations.

The sufficient and necessary condition of
equivalence between two stabilizer states

Applying the matrix representation of LC group, the
evolution of a stabilizer under LC operators can be
calculated as Θ2 = GΘ1.

Matrix representation of CV stabilizer state

A stabilizer which consists of * commutable and in-
dependent generators can be represented by a 2*×*
matrix Θ, whose columns are the vectors mapped
from the Pauli generator operator. Once the matrix
Θ is given, the generators H can be determined up
to some phase factors, then the stabilize state can be
determined.

Equivalence of CV stabilizer
states under local Clifford

operations
∙ Stabilizer state: An *-mode stabilizer state ∣Ψ⟩ is
defined as the simultaneous eigenstate with eigen-
value 1 of * commutable and independent Pauli
group elements.The set H = {4 ∈ ,1, 4∣Ψ⟩ =
∣Ψ⟩} is called the stabilizer of the state ∣Ψ⟩.

∙ Local Clifford operations:

E(#) = exp[−/#:̂] (1)
F(,) = exp[/,"̂] (2)
2 = exp[/(I/4)("̂2 + :̂2)] (3)
K (L) = exp[/(L/2)"̂2] (4)

∙An element 4 of ,1 can be generally written as
the following form,

4 = 7/M
∏

3

E3(#3)F3(,3), 4 ∈ ,1, M ∈ [0, 2I),

(5)
∙ The mapping N between the *-mode Pauli group
and the set of 2*-dimension real column vectors
is defined as

N(4) = N[7/M
∏

3

E3(#3)F3(,3)] ≜ (,1, ..., ,*, #1, ..., #*)
O .

(6)
∙Corresponding to mapping N, mapping Pmaps the
*-mode local Clifford ,*2 group to the set Q

*,
consisting of some 2* × 2* real matrices. First
consider one-mode local Clifford group ,12 and
the setQ1.

P(2 ) ≜

[

0 1
−1 0

]

, P(K (L)) ≜

[

1 L
0 1

]

, (7)

P(E())) ≜ 5, P(F(R)) ≜ 5. (8)

Now it can be easily generalized to *-mode LC
group ,*2 . P maps *-mode LC operator S to the

matrix G =

[

< =
> ?

]

, where <, =, > and ? are

diagonal matrices, i.e., < = diag(-1, ..., -*), = =
diag(B1, ..., B*),> = diag(%1, ..., %*),? = diag('1, ..., '*),
which satisfy that -3 × '3 − %3 × B3 = 1, (3 =

1, ⋅ ⋅ ⋅ , *). The fact means that
[

-3 B3
%3 '3

]

(3 = 1, ⋅ ⋅ ⋅ , *)

is the LC operator on the 3th mode.

Introduction
∙Continuous variable (CV) multipartite entangle-
ment plays important roles in quantum computa-
tion and quantum communication network.

∙ It is of great significance to investigate the charac-
teristics of stabilizer state, one of which is graph
state, under local Clifford (LC) operations.

∙ Entanglement degree of stabilizer state under LC
operations remains unchanged. One purpose of
our work is to determine whether two stabilizer
state are equivalent or not under LC operations.

∙Another purpose is to investigate quantum net-
work using CV graph state.

∙ Finally, a new measurement method (! param-
eter) of entanglement degree of two partite CV
entangled state is calculated using Wigner func-
tion, and R parameter is proved to be same as both
Schmidt number1 and 2 parameter related with
Reid’s method.
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