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Abstract Coherent source of continuous-variable quantum key distribution (CV QKD) sys-
tem may become noisy in practical applications. The security of CV-QKD scheme with the
noisy coherent source is investigated under realistic conditions of quantum channel and
detector. In particular, two models are proposed to characterize the noisy coherent source
through introducing a party (Fred) who induces the noise with an optical amplifier. When
supposing the party Fred is untrusted, two lower security bounds to the noise of the coherent
source are derived for reverse reconciliation and realistic homodyne and heterodyne detec-
tions. While supposing Fred is a neutral party, we derive two tight security bounds without
knowing Fred’s exact state for ideal detections. Moreover, the simulation results show that
the security of the reverse reconciliation CV-QKD protocols is very sensitive to the noise of
coherent source for both the homodyne and heterodyne detections.

Keywords Security bound · Noisy coherent source · Continuous-variable quantum key
distribution

1 Introduction

Quantum key distribution (QKD) [1–8] provides a novel way to allow two distant authorized
parties, the sender Alice and the receiver Bob, to establish a secret key through quantum and
classical channels. Different from the discrete-variable quantum key distribution (DV-QKD)
protocols [1–4], in continuous-variable quantum key distribution (CV QKD) [4–8], Alice
encodes information in the quadratures of optical field and Bob can decode the secret infor-
mation with high-efficiency and high-speed homodyne [5, 6], or heterodyne detection [7, 8].
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So CV-QKD schemes do not need single photon technology, and have prospect of high rate
secure key distribution. Recently, several experimental CV-QKD schemes based on coher-
ent states have been proposed [6, 8–10], and the unconditional security of CV-QKD with
ideal optical source have been also studied theoretically [11–18]. The CV-QKD protocols
based on coherent state with Gaussian modulation have been proved secure under collective
and coherent attacks. Exactly, the security bounds for these two attacks are clarified to be
coincident asymptotically by the quantum De Finetti theorem [4, 19].

For a practical CV-QKD system, the ignorance of its practical imperfections may limit
Eve’s attack strategy. Strictly speaking, the security bound should be reconsidered under
more powerful attacks introduced by Eve, since the leakage of information from the loop-
holes of the imperfect practical QKD system is open to Eve. Recently, the security of the
practical CV-QKD system has been analyzed [9, 20–27]. It has been found that adding noise
in error correction may be benefit to increase the secret key rate [21], but the noise in co-
herent state preparation will deteriorate the security [22–26]. In particular, a three-mode
entangle-state model [23] and a beam-splitter model [24] are proposed to characterize the
noisy modulation of coherent states, where the beam-splitter model is similar to the realistic
detector model [9] and the three-mode entangle-state model is under the assumption that the
modulation noise is untrusted. From a practical viewpoint, it is more reasonable to consider
that the modulation noise should be not controlled by the potential eavesdropper Eve. Thus,
a neutral party model is proposed [25] to characterize the whole Gaussian source noise,
where a neutral party Fred is introduced and a tighter security bound is derived. Moreover,
Weedbrook et al. has shown that the security of direct reconciliation CV-QKD protocol is in-
credibly robust against significant amounts of excess preparation noise [26], and the optical
parameter amplifier placed at the receiver’s site can improve the secure key rate [27].

The previous considerations of imperfection of practical QKD system mainly focus on
the modulation, and the noise originated from coherent state generator is neglected or has
not been studied separately. In this paper, we explore the security of CV-QKD scheme with
imperfect coherent source under realistic conditions of lossy and noisy quantum channel and
detector. Specifically, we characterize the imperfect coherent source through introducing a
party (Fred) who induces the noise with a practical phase-insensitive amplifier. According
to the role of Fred, i.e., Fred being untrusted or neutral, two models are proposed to calcu-
late the secret key rates of the reverse reconciliation CV-QKD protocol under the collective
attack. When Fred is untrusted, lower bounds to the degree of the noise of coherent source
is derived under realistic homodyne and heterodyne detection. While Fred is a neutral party,
two tight bounds are obtained for ideal homodyne and heterodyne detection without know-
ing Fred’s exact state. We find that the noise of coherent source will deteriorate the security
of the reverse reconciliation CV-QKD protocol significantly for both the homodyne and het-
erodyne detections. It should be mentioned that, under the same conditions of modulation
variance and quantum channel, the tight bound coincides with the main result in [26].

This paper is organized as follows. In Sect. 2, we introduce the models of prepare-and-
measurement(P&M) and the equivalent entanglement-based (E-B) schemes. We calculate
the secret key rates of the reverse reconciliation scheme, and derive the corresponding
bounds to the noise of imperfect coherent source for homodyne and heterodyne detections,
based on two models when supposing Fred is untrusted or neutral, in Sect. 3. Finally, con-
clusions are drawn in Sect. 4.
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Fig. 1 The P&M scheme of a Gaussian coherent-state CV QKD protocol with imperfect coherent source.
A random number generator (RNG) gives two values XA and PA . The signal state is generated by the imper-
fect source (Src) with shot noise (δXA, δPA), which is then displaced in the phase space by using a Gaussian
modulator (Mod) with (XA,PA). The gain g and idle input (XI ,PI ) is assumed to be individually induced
by a third party, Fred

2 Model Description

In this section, we introduce the physical models of CV-QKD scheme with imperfect
coherent source under study, i.e., prepare-and-measurement(P& M) and the equivalent
entanglement-based (E-B) schemes. As known, for a standard P&M scheme, Alice encodes
the key information, i.e., the generated two Gaussian random numbers XA and PA, with
mean values of 0 and variances VA, into the state |XA + iPA〉 by modulating an initial
coherent state. Then, Alice sends the prepared states to Bob through a quantum channel
with transmittance T and excess noise εc . At the receiver’s site, Bob randomly chooses one
quadrature to measure with homodyne detection [6], or measures both quadratures simul-
taneously with heterodyne detection [7]. Thus, Alice and Bob may share two correlated
continuous variable strings. In the final step, Alice and Bob apply reconciliation procedure
and privacy amplification to extract a private binary key string from the shared informa-
tion. However, in a practical CV-QKD system, the coherent source before modulation may
become imperfect and inevitably induce extra excess noise. We model this imperfect co-
herent source as a combination of a phase-insensitive amplifier (PIA) with gain g and idle
input(XI ,PI ), and an ideal coherent source denoted by the quadratures (δXs

A, δP s
A), which

satisfy 〈(δXs
A)2〉 = 〈(δP s

A)2〉 = 1. The P&M model is depicted in Fig. 1.
The quadratures (δXA, δPA) of imperfect coherent state can be described as

δXA = √
gδXs

A +
√

g − 1δXI ,

δPA = √
gδP s

A +
√

g − 1δPI ,
(1)

where g ≥ 1 is the gain of amplification, and (XI ,PI ) are the quadratures of the idler mode
that is ideally in a vacuum state, or in a realistic state featuring a noise variance VI . There-
fore, the state sent to Bob can be denoted by quadratures (X,P ) as

X = XA + δXA,

P = PA + δPA.
(2)
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Fig. 2 The equivalent E-B scheme of the Gaussian coherent-state CV-QKD protocol with homodyne or
heterodyne detections. Fred prepares state ρAB for Alice. The transmission efficiency T and excess noise εc
are controlled by Eve

We obtain 〈X2〉 = 〈P 2〉 = V + εs , where V = VA + 1 and εs = g − 1 + (g − 1)VI . The
conditional variances VX|XA

= VP |PA
are given by

VX|XA
= VP |PA

= 〈X2〉 − 〈XXA〉2

〈X2
A〉 = εs + 1. (3)

For the convenience of security analysis, an equivalent E-B scheme is proposed in Fig. 2.
Fred prepares a pair of Gaussian EPR beams ρAB and takes it purification. Thus, the global
pure state shared by Alice, Bob and Fred can be denoted by |ΨABF 〉. Quadratures (X′,P ′)
and (X,P ) denote the state kept by Alice and the one sent Bob, which satisfy

〈X′2〉 = 〈P ′2〉 = V, 〈X2〉 = 〈P 2〉 = V + εs . (4)

According to the uncertainty relationship [28], we get

|〈XX′〉2| ≤ V (V + εs) − V

V + εs

. (5)

Since the three-party system ABF may not be maximally entangled, the correlation between
modes A and B1 may not saturate the limit in Eq. (5). So it can be reasonably assumed that

〈XX′〉 =
√

V 2 − 1,

〈PP ′〉 = −
√

V 2 − 1.
(6)

In the E-B scheme, when Alice takes a heterodyne detection on X′ and P ′ simultane-
ously, the measurement values of X′ and P ′ can be expressed as

X′
A = X′ − δX′

A, P ′
A = P ′ − δP ′

A, (7)

where 〈(δX′
A)2〉 = 〈(δP ′

A)2〉 = 1. Thus, Alice’s estimate of (X,P ), denoted by (XA,PA),
satisfy

XA =
√

V − 1
V + 1

X′
A, PA = −

√
V − 1
V + 1

P ′
A. (8)

It can be easily calculated 〈X2
A〉 = 〈P 2

A〉 = VA, and VX|XA
= VP |PA

= εs + 1, which is the
same as the P&M scheme. Therefore, when supposing the EPR source and Alice’s detection
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are hidden in the black box, Eve can not distinguish which scheme is applied, since the
only outputs of the black box are the values of εs , XA and PA, and the state (X,P ). The
total channel-added noise referred to the channel input is expressed in shot noise units as
χline = 1/T − 1 + εc + εs .

When Bob receives the modulated quantum states, he takes homodyne or heterodyne
detection. As shown in Fig. 2, a practical detector can be modeled by assuming that the
quantum signal is attenuated by factor η and mixed with an added thermal noise νel due
to the detector electronics, which can be modeled by an EPR state ρH0G with variance νd .
Also, we can define a detection-added noise for homodyne and heterodyne detection referred
to Bob’s input, which can be expressed in shot-noise units as χhom = (1 − η + νel)/η and
χhet = (2 − η + 2νel)/η. The variance νd for homodyne and heterodyne detections are then
correspondingly valued as νhom

d = ηχhom/(1 − η) and νhet
d = (ηχhet − 1)/(1 − η). Thus, the

total noise referred to the channel input can then be expressed as χthom = χline + χhom/T

and χthet = χline + χhet /T for homodyne and heterodyne detection, respectively.

3 Security of the CV-QKD Scheme with Noisy Coherent Source

Since the P&M scheme and E-B scheme are equivalent for Alice, Bob, and the eavesdropper
Eve, the secure key rate can be calculate in the E-B scheme. In the case of collective attack,
she interacts individually with each pulse sent by Alice in the same way. So, the three-
party global pure state becomes four-party state |ΨABEF 〉. In this section, we consider the
homodyne and heterodyne detection cases in parallel for reverse reconciliation. So the raw
key rate can be calculated as

KR = IAB − χBE, (9)

where IAB is the Shannon mutual information between Alice and Bob, and χBE is the Holevo
bound [29], which defines the maximum information available to Eve on Bob’s key, with the
form

χBE = S(ρE) −
∫

dmBp(mB)S(ρ
mB
E ), (10)

where mB represents the measurements of Bob, and it takes the form mB = xB or mB =
xB,pB for homodyne or heterodyne detector, respectively. Also, p(mB) is the probability
density of the measurement results, ρ

mB
E is the state of Eve’s state conditional on Bob’s

measurement outcome, and S(ρ) is the von Neumann entropy of the quantum state ρ. When
using homodyne detection, the mutual information Ihom

AB can be derived from Bob’s mea-
sured variance VB = ηT (V + χthom) and the conditional variance VB|A = ηT (1 + χthom)

as

I hom
AB = 1

2
log2

VB

VB|A
= 1

2
log2

V + χthom

1 + χthom

. (11)

While for the heterodyne detection, two quadratures are measured, we get

I het
AB = log2

VB

VB|A
= log2

V + χthet

1 + χthet

. (12)

To calculate Eve’s information χBE , we can use the fact that Eve’s system purifies the
system FAB2, and Bob’s measurement purifies the system FAEHG. Since S(ρ

mB
FAHG) is
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independent of mB for Gaussian protocols, we get

χBE = S(ρFAB2) − S(ρ
mB
FAHG). (13)

In what follows, we calculate the key rate based on two models according to the role of Fred.

3.1 Untrusted Party Model

In this subsection, we suppose that Fred is an untrusted party, and his state can be controlled
by Eve. This corresponds to the situation that Eve controls the noise of the coherent source.
Thus, a lower bound of the secret key rate can be derived as

K̃R = IAB − χBEF , (14)

where IAB represents the mutual information between Alice and Bob, and χBEF takes the
form

χBEF = S(ρAB2) − S(ρ
mB
AHG)

=
2∑

i=1

G

(
λi − 1

2

)
−

5∑

i=3

G

(
λi − 1

2

)
, (15)

where G(x) = (x + 1) log2(x + 1) − x log2 x, λ1,2 are the symplectic eigenvalues of co-
variance matrix γAB2 characterizing state ρAB2 , and λ3,4,5 are the symplectic eigenvalues of
the covariance matrix γ

mB
AHG characterizing the state ρ

mB
AHG after Bob’s measurement. The

covariance matrix γAB2 does not depend on the type of detection. Easily, we obtain

λ2
1,2 = 1

2
[A ±

√
A2 − 4B], (16)

where

A = V 2 + 2T (1 − V 2) + T 2(V + χline)
2,

B = T 2(1 + V χline)
2.

(17)

The covariance matrix γ
mB
AHG can be calculated as

γ
mB
AHG = γAHG − σ T

AHGB3
HσAHGB3 , (18)

where H is the symplectic matrix that represents the homodyne or heterodyne measurement
on mode B3. For homodyne case, Hhom = (XγB3X)MP with X =

( 1 0
0 0

)
and MP the Moore-

Penrose pseudo-inverse of a matrix. While for heterodyne case, Hhet = (γB3 + I2)
−1. We

find that the symplectic eigenvalues λ3,4 are given by

λ2
3,4 = 1

2
[C ±

√
C2 − 4D], (19)

where for the homodyne detection,

Chom = Aχhom + V
√

B + T (V + χline)

T (V + χthom)
,

Dhom =
√

BV + Bχhom

T (V + χthom)
,

(20)
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Fig. 3 K̃hom
R and K̃het

R as a
function of the channel losses for
reverse reconciliation and
imperfect homodyne (red thick
lines) and heterodyne (blue thin
lines) detections. The solid,
dashed, dotted, and dot-dashed
lines represent the key rate for
g = 1,1.03,1.06, and 1.1,
respectively (Color figure online)

and for the heterodyne detection,

Chet = 1
[T (V + χthet )]

[Aχ2
het + B + 1 + 2χhet (V

√
B + T (V + χline)) + 2T (V 2 − 1)],

Dhet =
(

V +
√

Bχhet

T (V + χthet )

)2

,

(21)

where A,B are given in Eq. (18). The last symplectic eigenvalue is λ5 = 1 for both detec-
tions. Based on Eqs. (15–17) and Eqs. (19–21), we can calculate the Holevo information
bound χBEF , and thus derive the secret key rate as K̃hom

R and K̃het
R from Eq. (14) for homo-

dyne and heterodyne detections, respectively.
The secret key rates K̃hom

R and K̃het
R are plotted in Fig. 3. The parameters VA, εc, η and

νel are fixed in the simulations to the values VA = 18.9, εc = 0.02 (in shot-noise units),
η = 0.526 and νel = 0.04361 (in shot-noise units), which are practical in our CV-QKD ex-
periment. The noise of the PIA VI is set to 1. It can be seen that the homodyne and het-
erodyne detections take similar performance, and the security key rates for both detections
are very sensitive to the noise of coherent source. The security bound to the noise of im-
perfect coherent source is weighted by the parameter g. The relationship between the secret
key rates K̃hom

R , K̃het
R and g are shown in Fig. 4 when transmission efficiency is T = 0.268,

which corresponds to 27.2 km long optical fiber with loss coefficient of 0.21 dB/km . Also,
we can obtain the lower bounds for homodyne and heterodyne detections as gu†

hom = 1.104
and gu†

het = 1.105, respectively. It should be mentioned that when assuming the homodyne
and heterodyne detectors are perfect, the lower bounds are renewed as gu∗

hom = 1.088 and
gu∗

het = 1.090, which are even lower than bounds gu†
hom and gu†

het . It is because that the noise
introduced by imperfect detector enhance the tolerable excess noise for RR schemes. This
is quite coincident with result in [21] that adding some noise which is not controlled by Eve
on the reference partner of the reconciliation could make the schemes more robust against
noise. It can be easily understood that the additional noise affects the mutual information
between Alice and Bob, and decreases more information eavesdropped by Eve on the final
key.
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Fig. 4 K̃hom
R and K̃het

R as a
function of the gain g for
homodyne (red solid line) and
heterodyne (blue dashed line)
detections (Color figure online)

3.2 Neutral Party Model

From a practical viewpoint, the noise of the coherent source is originated from the physical
imperfection of the apparatus, which is not controlled by the legitimated parties. Also, from
the viewpoint of basic assumption in QKD, potential eavesdropper Eve has no access to
the laboratories of the legitimate parties. So it is reasonable to consider the noise of the
imperfect coherent source is just controlled by a third neutral party, Fred. To simplify the
calculation, detector on Bob’s side is assumed to be perfect in the followings. Thus, the
mutual information between Alice and Bob in Eqs. (11) and (12) are simplified to

Ihom
AB = 1

2
log2

V + χline

1 + χline

,

I het
AB = log2

T (V + χline) + 1
T (1 + χline) + 1

,

(22)

and Eq. (13) can be rewritten as

χBE = S(ρFAB2) − S(ρ
mB
FA )

=
3∑

i=1

G

(
λ′

i − 1
2

)
−

5∑

i=4

G

(
λ′

i − 1
2

)
. (23)

The covariance matrix of purification of ρFAB2 would be expressed as

γFAB2 =





F11 F12 F13

F21 (V + εs)I
√

T [(V + εs)2 − 1]σz

F31

√
T [(V + εs)2 − 1]σz T (V + χline)I



 , (24)

where each Fij represents an unknown 2 × 2 matrix describing either F or its correlations
with AB . Obviously, we can not calculate χBE through Eq. (24). However, there exists
another Gaussian state ρ ′

FAB2
with known covariance matrix γ ′

FAB2
, which can be used to
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obtain an upper bound of χBE . The covariance matrix γ ′
FAB2

is in the form

γ ′
FAB2

=




I 0 0
0 (V + εs)I

√
T [(V + εs)2 − 1]σz

0
√

T [(V + εs)2 − 1]σz T (V + χline)I



 . (25)

Obviously, the reduced state ρ ′
B2

= TrFA(ρ ′
FAB2

) is identical to the reduced state ρB2 =
TrFA(ρFAB2), then ρFAB2 can be changed to ρ ′

FAB2
through a unitary transformation UFA

on the system [30]. Thus, we get S(ρFAB2) = S(ρ ′
FAB2

). Similarly, we also find S(ρ
mB
FA ) =

S(ρ
′mB
FA ). We then derive the symplectic eigenvalues of the covariance matrix γ ′

FAB2
as

λ′2
1,2 = 1

2
(A′ ±

√
A′2 − 4B ′),λ′

3 = 1, (26)

where A′ = (V + εs)
2 − 2T [(V + εs)

2 − 1] + T 2(V + χline)
2, and B ′ = T 2[1 + (V +

εs)(χline − εs)]2. Also, the symplectic eigenvalues of the covariance matrix γ
′mB
FA for ho-

modyne and heterodyne detections are given by

λ′hom
4 =

√[
V + εs − (V + εs)2 − 1

V + χline

]
(V + εs), λ′hom

5 = 1, (27)

and

λ′het
4 = V + εs − T [(V + εs)

2 − 1]
1 + T (V + χline)

, λ′het
5 = 1, (28)

respectively. Therefore, the Holevo information χBE can be calculated from Eqs. (23) and
(26–28), and thus we obtain the secret key rate in the neutral party model as Khom

R and Khet
R

for ideal homodyne and heterodyne detections, respectively.
The secret key rates Khom

R and Khet
R as a function of the channel losses (measured in dB)

are plotted in Fig. 5. The parameters VA, VI , εc are fixed the same as in the untrusted party
model, and η = 1, νel = 0 corresponding to the ideal detection. Obviously, it is shown in
Fig. 5 that the security key rate is also very sensitive to the noise of coherent source in this

Fig. 5 Khom
R and Khet

R as a
function of the channel losses for
reverse reconciliation and ideal
homodyne (red thick lines) and
heterodyne (blue thin lines)
detections. The solid, dashed,
dotted, and dot-dashed lines
represent the key rate for
g = 1,1.3,1.35, and 1.4,
respectively (Color figure online)
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Fig. 6 Khom
R and Khet

R as a
function of the gain g for
homodyne (red solid line) and
heterodyne (blue dashed line)
detections (Color figure online)

model. The relationship between Khom
R and Khet

R and g are shown in Fig. 6 when transmis-
sion efficiency is T = 0.268. We then obtain the tight bounds for homodyne and heterodyne
detections as gn∗

hom = 1.585 and gn∗
het = 1.514, respectively. It is quite reasonable that the tight

bounds gn∗
hom and gn∗

het are higher than the corresponding lower bounds gu∗
hom and gu∗

het , since
Eve captures less information in the neutral party model. It should be mentioned that, when
we set the channel excess noise εc = 0 in high modulation variance (VA = 105), the bound
of g would be extremely high (larger than 500), which is quite coincident with the previous
research result in [26]. Exactly, the bound in [26] is calculated under the consideration that
Eve performing a given collective Gaussian attack, i.e., the entangling cloner attack [28].
So this coincidence demonstrates the efficiency of the entangling cloner attack in collective
Gaussian attacks. Also, the bounds to the noise of the imperfect coherent source will be also
significant large when the modulation variance is a proper value, such as VA = 18.9, for
εc = 0. Therefore, it can be concluded that the excess noise εc of the quantum channel is the
crucial parameter, which affects the toleration of noise of coherent source, for the reverse
reconciliation CV QKD schemes.

4 Summary and Conclusions

We have investigated the security of CV-QKD scheme with imperfect coherent source, lossy
and noisy quantum channel, and realistic detector. In particular, we model the imperfect
coherent source by an ideal coherent source and an optical amplifier which is controlled by
a third party Fred. And then we propose two models, i.e., the untrusted and neutral party
model, to calculate the secret key rates when supposing Fred is an untrusted or neutral
party, correspondingly. When Fred is untrusted, we derive two lower bounds gu†

hom (gu∗
hom)

and gu†
het (gu∗

het ) to the noise of the imperfect coherent source under reverse reconciliation
and imperfect (perfect) homodyne and heterodyne detections. While Fred is neutral, we
derive two tight security bounds gn∗

hom and gn∗
het without knowing the exact state of Fred for

ideal detections. The simulation results show that the security of the reverse reconciliation
CV-QKD protocol is very sensitive to the noise of coherent source for both homodyne and
heterodyne detection. Due to the different roles of Fred, the simulations demonstrate that
gn∗

hom and gn∗
het are reasonably higher than gu∗

hom and gu∗
het . Moreover, we show that the security

bounds gn∗
hom is coincident with the previous studies.
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