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A continuous-variable measurement-device-independent multiparty quantum communication protocol is
investigated in this paper. Utilizing the distributed continuous-variable Greenberger-Horne-Zeilinger state, this
protocol can implement both quantum cryptographic conference and quantum secret sharing. We analyze the
security of the protocol against both the entangling cloner attack and the coherent attack. The entangling cloner
attack is a practical individual attack, and the coherent attack is the optimal attack Eve can implement. Simulation
results show that the coherent attack can greatly reduce the secret key rate. Different kinds of entangled attacks
are compared and we finally discuss the optimal coherent attacks.
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I. INTRODUCTION

In quantum cryptography, to maximize secure transmission
distance and remove detector side attacks, physicists use the
measurement-device-independent (MDI) method [1], which
has been experimentally realized [2]. In MDI quantum key
distribution (QKD), anyone participating in the quantum
communication connects to an untrusted party, who is not a
legitimate member in the quantum communication. The secure
communication relies on the untrusted party’s measurement.
So attacks on measurement devices are moved from legitimate
members’ sides to the untrusted party’s side. Since any attack
on measurement devices can be transformed into some attack
in the channel followed by a correctly operated measurement
[3], we can just consider attacks in the channels. One important
realistic attack is the entangling cloner attack, which utilizes
the EPR state to maximize the information Eve can steal in an
individual attack [4]. The optimal attack Eve can implement,
however, is not an individual attack, but a coherent attack,
where Eve uses the ancillary system to globally interact with
the signals and finally makes an optimal joint measurement.

MDI multipartite quantum communication with long dis-
tance is investigated in Ref. [5]. This research is based on
discrete variable systems, while Gaussian modulation and
homodyne measurement [6] provide us another way to realize
MDI multipartite quantum communication in continuous-
variable (CV) quantum systems. In this paper, we use CV
to investigate multiparty quantum cryptography. CV MDI
two-party quantum cryptography has been investigated in
Ref. [3]. Instead of using coherent state and heterodyne
measurement as Ref. [3], our protocol utilizes squeezed state
of light and homodyne measurement to maximize the secret
key rate. Hence the main difficulty for the practical realization
of our protocol is to generate squeezed state of light. Although
it is much more difficult than generating a coherent state of
light, some experiments on CV squeezed states have been done
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[7,8], indicating that CV quantum communication based on the
squeezed state can be realized in the future.

We design and investigate two kinds of CV MDI multipar-
tite quantum communication protocols in this paper. One is
quantum cryptographic conference (QCC) [9] and the other
is quantum secret sharing (QSS) [10]. QCC enables each
individual within a specific group to decrypt the encrypted
messages published by any group member, whereas nobody
outside the group can successfully decrypt the secret messages.
QSS enables an authorized group of people to decrypt the
secret messages by collaboration, but any unauthorized group
of people fails to decrypt the messages.

This paper is organized as follows. Section II introduces the
MDI multipartite quantum communication protocols in detail.
Section III analyzes the security of this protocol against the
entangling cloner attack and the coherent attack, respectively,
for both QCC and QSS. Section IV shows the numerical
simulation of this protocol against two kinds of attacks.
Section V gives the conclusion of this paper.

II. PROTOCOLS OF MULTIPARTITE QUANTUM
COMMUNICATION

We are going to explain the details of the protocols for
both QCC and QSS in this section. Both of them rely on the
postprocessed GHZ state, while the main difference is within
the postprocessing of classical data.

Before going into the detail of the protocol, we want to first
introduce the CV Greenberger-Horne-Zeilinger (GHZ) state
[11]. To implement these two kinds of multiparty quantum
communication protocols, we utilize CV GHZ state, which
is theoretically investigated [12] and experimentally realized
by linear optics [13,14]. It is a multipartite entangled state
whose uncertainties of relative position and total momentum
are squeezed. For the tripartite CV GHZ state, their positions
and momenta satisfy the relations: X̂1 − X̂2 → 0,X̂2 − X̂3 →
0, and P̂1 + P̂2 + P̂3 → 0. The CV GHZ state can be generated
by a series of beam splitters with particular transmittances and
squeezed vacuum states [15]. But in our protocol, the CV GHZ
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FIG. 1. EB scheme.

state is not prepared and distributed, whereas it is obtained
by postprocessing using the idea of entanglement swapping
[16,17].

Two schemes of the protocol are shown in the following.
One is the entanglement-based (EB) scheme shown in Fig. 1
and the other is the prepare-and-measurement (PM) scheme
shown in Fig. 2. In both EB and PM schemes, Alice,
Bob, and Charlie are connected with a fourth, untrusted
person David and the secure communication relies on David’s
measurements. It implies that both schemes are MDI multi-
partite quantum communication protocols, which remove any
detector side attack in Alice’s, Bob’s, and Charlie’s sides. We
introduce the EB scheme first, then the PM scheme.

Alice, Bob, and Charlie prepare an EPR pair, respectively,
which, in the CV case, is a two-mode squeezed state (TMSS)
[18]. They hold one mode of the EPR pair in their own posses-
sion and send the other mode to the fourth, untrusted person
David. Receiving three modes from Alice, Bob, and Charlie,
David does the following operation. The two modes from Alice
and Bob go through a beam splitter with transmittance 1√

2
.

Then the position quadrature X̂D of the output mode D is
detected by a homodyne measurement. The other output mode
is mixed with the mode from Charlie by another beam splitter

with transmittance
√

2
3 and the output modes are denoted by

E and F . The position quadrature X̂E and the momentum
quadrature P̂F are detected by two homodyne measurements.
David publishes the measurement outcomes XD,XE , and PF .
To construct a GHZ state, Bob and Charlie use these data

FIG. 2. PM scheme.

to finish the displacement operations on their own modes.
Specifically, Bob shifts the position quadrature X̂B1 with√

2XD and Charlie shifts the position X̂C1 and the momentum

P̂C1 with (
√

1
2XD −

√
3
2XE) and

√
3PF , respectively. After

that, Alice, Bob, and Charlie own the modes A1,B3, and C3,
respectively, and these three modes form a distributed CV
GHZ state. As for the QCC scheme, they apply homodyne
measurements over the positions, respectively, and use the
measurement outcomes XA1 ,XB3 , and XC3 to do reconciliation
and postselection. Since X̂A1 − X̂B3 → 0 and X̂B3 − X̂C3 →
0, they can obtain coincident keys. As for the QSS scheme, they
homodyne the momentum quadratures, respectively. At least
two of the three must share their measurement outcomes and do
reconciliation and postselection with the third person. Because
of the relation P̂A1 + P̂B3 + P̂C3 → 0, they can obtain the
third person’s secret key. In both the QCC and QSS schemes,
with the random secret keys, they can use the one-time pad
[19] to implement unconditional secure multipartite quantum
communication.

Now we introduce the equivalent PM scheme. Alice,
Bob, and Charlie first generate Gaussian-distributed ran-
dom numbers, respectively, and keep these data private. In
QCC, Alice, Bob, and Charlie do Gaussian modulation on
position-squeezed vacuum states so that the mean positions of
the modulated squeezed states become Gaussian-distributed
random numbers XA,XB , and XC . In QSS, they do Gaussian
modulation on momentum-squeezed vacuum states so that
the mean momenta of the modulated squeezed states become
Gaussian-distributed random numbers PA,PB , and PC . This
preparation of a Gaussian modulated squeezed state is equiva-
lent to making a single-mode homodyne measurement over a
TMSS. This is because as for a TMSS, single-mode homodyne
detection projects the other mode into a squeezed state with a
specific mean value related to the measurement outcome. Then
the Gaussian modulated squeezed states are sent to the fourth,
untrusted person David. David mixes these three modes by
two specific beam splitters, makes homodyne measurements
on the three outputs, and publishes the measurement outcomes,
same as the EB scheme. Bob and Charlie use the public data
to postprocess their own data. In QCC, Alice remains her data
constant, Bob modifies XB as X′

B = XB +
√

2XD and Charlie

modifies XC as X′
C = XC + (

√
1
2XD −

√
3
2XE), so that their

data satisfy the relation XA − X′
B → 0 and X′

B − X′
C → 0.

By doing reconciliation and postprocessing, they can obtain
the coincident keys for QCC. In QSS, Alice and Bob remain
their data unchanged and Charlie replaces PC with P ′

C =
PC +

√
3PF , making their data satisfy PA + PB + P ′

C → 0.
Finally, two of them share their private data with each other. By
reconciliation and postprocessing, they can obtain the secret
key of the third person.

III. SECURITY ANALYSIS

Now let’s investigate the security of this protocol for both
QCC and QSS schemes. The security of EB and PM schemes
are equivalent. Since in the EB scheme, we can use the method
of purification to calculate the secret key rate, we choose to
analyze the EB scheme. Our security analysis involves two
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kinds of attacks: one is the entangling cloner attack and the
other is the coherent attack.

In general, there can be any attack at the detector side, i.e.,
at David’s side in Fig. 1. But any attack at the detector side is
equivalent to adding a specific attack in the channel followed
by a correctly operated measurement device [3]. Thus we can
assume that Eve’s attack only exists in the channel and that
David’s operation and measurement data can be trusted.

A. Independent entangling cloner attack

In this subsection, we focus on the independent entangling
cloner attack in each channel. As shown in Fig. 3, at the
beginning, Eve owns three independent EPR pairs, i.e., three
TMSS’s. He injects one mode of each pair into the channel,
through a beam splitter with transmittance ηA(ηB,ηC), and
stores the output mode of each beam splitter, ÊA1 (B1,C1), and
the other mode of each EPR pair, ÊA2 (B2,C2), in the quantum
memory.

In QCC, we consider the case when Alice wants to send
her secret message to Bob and Charlie. To achieve this, Alice
needs to share secret keys with Bob and Charlie, respectively,
by implementing QKD. The secret key rate can be defined as

KQCC = min{KAB,KAC}, (1)

where KAB is the secret key rate between Alice and Bob, and
KAC is the secret key rate between Alice and Charlie.

Two kinds of reconciliation methods lead to different secret
key rates. With reverse reconciliation,

KRR
AB = βI

(
XA1 : XB3

)
− I

(
XA1 : XEA1 ,XEA2

)
,

KRR
AC = βI

(
XA1 : XC3

)
− I

(
XA1 : XEA1 ,XEA2

)
.

(2)

With direct reconciliation,

KDR
AB = βI

(
XA1 : XB3

)
− I

(
XB3 : XEB1 ,XEB2

)
,

KDR
AC = βI

(
XA1 : XC3

)
− I

(
XC3 : XEC1 ,XEC2

)
.

(3)

At the right-hand sides of Eq. (2) and Eq. (3), the first term
represents the mutual information between the measurement
data of XA1 and the measurement data of XB3(C3) [20], and

FIG. 3. EB scheme against independent entangling cloner attacks.

the second term denotes the mutual information between the
measurement data of XA1(B3,C3) and the measurement data of
XEA1(B1,C1) and XEA2(B2,C2) . β is the reconciliation efficiency.

In QSS, we assume Charlie holds the secret key, and Alice
and Bob have to collaborate with each other to obtain the secret
key. The secret key rate can be defined as

KRR
QSS = βI

(
PA1 ,PB3 : PC3

)
− I

(
PC3 : PEC1 ,PEC2

)
, (4)

with reverse reconciliation, and

KDR
QSS = βI

(
PA1 ,PB3 : PC3

)
− I

(
PA1 : PEA1 ,PEA2

)

− I
(
PB3 : PEB1 ,PEB2

)
, (5)

with direct reconciliation. At the right-hand sides of Eq. (4)
and Eq. (5), the first term represents the mutual information
between the measurement data of PA1 and the measurement
data of PB3 and PC3 , and the second term denotes the mutual
information between the measurement data of PA1(B3,C3) and
the measurement data of PEA1(B1,C1) and PEA2(B2,C2) .

To calculate the mutual information in Eqs. (2)–(5), we
need to obtain the covariance matrix of the whole state held
by Alice, Bob, Charlie, and Eve in the following way.

At the beginning of this protocol, the initial whole state
ρA,EA,B,EB,C,EC

is the tensor product of six independent
TMSS’s. Its covariance matrix is

VA,EA,B,EB,C,EC
=

3⊕

k=1

V, (6)

where

V=

⎛

⎜⎜⎜⎜⎜⎜⎝

V I
√

V 2 − 1Z 0 0
√

V 2 − 1Z V I 0 0

0 0 VEI
√

V 2
E − 1Z

0 0
√

V 2
E − 1Z VEI

⎞

⎟⎟⎟⎟⎟⎟⎠
.

(7)

V (V ! 1) is the variance of Alice’s (Bob’s, Charlie’s)
TMSS’s, VE (VE ! 1) is the variance of Eve’s TMSS’s, I is
identity matrix, 0 is zero matrix, and Z is the Pauli Z matrix.

In each channel, Alice’s (Bob’s, Charlie’s) mode goes
through a beam splitter with transmittance ηA(ηB,ηC). The
overall operation of these three beam splitters can be
written as

UEve = BSA

⊕
BSB

⊕
BSC, (8)

where

BSA(B,C) =

⎛

⎜⎜⎜⎜⎝

I 0 0 0

0 √
ηA(B,C)I

√
1 − ηA(B,C)I 0

0 −
√

1 − ηA(B,C)I
√

ηA(B,C)I 0

0 0 0 I

⎞

⎟⎟⎟⎟⎠
.

(9)
At David’s side, the overall operation of the two beam

splitters is

UDavid = BS2BS1, (10)
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where

BS1 =

⎛

⎜⎝
W1 W2 0

−W2 W1 0

0 0 I

⎞

⎟⎠, BS2 =

⎛

⎜⎝
W3 0 W4

0 I 0

−W4 0 W3

⎞

⎟⎠,

W1 =

⎛

⎜⎜⎜⎝

I 0 0 0

0 1√
2
I 0 0

0 0 I 0

0 0 0 I

⎞

⎟⎟⎟⎠
, W2 =

⎛

⎜⎜⎜⎝

0 0 0 0

0 1√
2
I 0 0

0 0 0 0

0 0 0 0

⎞

⎟⎟⎟⎠
,

W3 =

⎛

⎜⎜⎜⎜⎝

I 0 0 0

0
√

2
3 I 0 0

0 0 I 0

0 0 0 I

⎞

⎟⎟⎟⎟⎠
, W4 =

⎛

⎜⎜⎜⎝

0 0 0 0

0 1√
3
I 0 0

0 0 0 0

0 0 0 0

⎞

⎟⎟⎟⎠
.

(11)

Before any homodyne measurement, the whole state be-
comes ρA1,F,EA1,EA2,B1,D,EB1,EB2,C1,E,EC1,EC2 with the covari-
ance matrix,

VA1,F,EA1,EA2,B1,D,EB1,EB2,C1,E,EC1,EC2

= UDavidUEveVA,EA,B,EB,C,EC
UT

EveUT
David. (12)

By permutating the modes in the covariance matrix in Eq.
(12) in the order of A1,B1,C1,Eve,D,E,F , we can rewrite it
in the form of

VA1,B1,C1,Eve,D,E,F =
(

VA1,B1,C1,Eve,D,E C

CT VF

)

, (13)

where the subscript Eve denotes all the six modes
EA1,EA2,EB1,EB2,EC1, and EC2, and C represents the co-
variance submatrix.

Homodyning P̂F turns the reduced covariance matrix
VA1,B1,C1,Eve,D,E into [21]

VA1,B1,C1,Eve,D,E|PF

= VA1,B1,C1,Eve,D,E − C
(

0 0
0 1

V (P̂F )

)
CT , (14)

where V (P̂F ) is the variance of P̂F , given in the matrix
VF . As shown in Eq. (14), the covariance matrix following
partial homodyne measurement has nothing to do with the
measurement outcome. Thus, although the measurement result
may be different each time, the covariance matrix following
the partial measurement remains the same.

Iteratively calculating the covariance matrix of the state
after partial Gaussian measurements [6,22], we can obtain the
covariance matrix of the partial state ρA1,B1,C1,Eve after X̂D,X̂E ,
and P̂F are homodyned.

Since displacement operations eiξX̂ and eiξ ′P̂ remain the
variances and covariances of X̂ and P̂ the same, while only
changes their mean values, the partial state ρA1,B3,C3 owns the
same covariance matrix as ρA1,B1,C1|XD,XE,PF

. Thus, by now, we
have obtained the covariance matrix of the state ρA1,B3,C3,Eve,
denoted by VA1,B3,C3,Eve.

Now we can calculate Eqs. (2)–(5) by using VA1,B3,C3,Eve. In
this calculation, we may need to obtain the covariance matrix

of a reduced state of ρA1,B3,C3,Eve by using the formula similar
to Eq. (14), when a partial homodyne measurement is applied.

The first terms at the right-hand sides of Eqs. (2) and (3)
are given by

I
(
XA1 : XB3(C3)

)
= 1

2
log2

V (X̂B3(C3))

V (X̂B3(C3)|XA1 )
, (15)

where V (X̂B3(C3)|XA1 ) is the conditional variance of X̂B3(C3)

after X̂A1 is homodyned and can be obtained from the
covariance matrix VB3C3|XA1

.
The second terms in Eqs. (2) and (3) are

I
(
XA1(B3,C3) : XEA1(B1,C1) ,XEA2(B2,C2)

)

= 1
2

log2
V (X̂A1(B1,C1))

V (X̂A1(B1,C1)|XEA1(B1,C1) ,XEA2(B2,C2) )
, (16)

where V (X̂A1(B1,C1)|XEA1(B1,C1) ,XEA2(B2,C2) ) is the variance of
X̂A1(B1,C1) after X̂EA1(B1,C1) and X̂EA2(B2,C2) are homodyned,
and can be obtained from the reduced covariance matrix
VA1(B3,C3)|XEA1(B1,C1) ,XEA2(B2,C2)

. It is the maximal mutual infor-
mation between Eve’s measurement data and Alice’s (Bob’s,
Charlie’s) measurement data. Because Eve can decrease
V (X̂A1) most by homodyning on X̂EA1 and X̂EA2 for reverse
reconciliation, and reduce V (X̂B3(C3)) most by homodyning on
X̂EB1(C1) and X̂EB2(C2) for direct reconciliation.

The first terms at the right-hand sides of Eq. (4) and Eq. (5)
are

I
(
PA1 ,PB3 : PC3

)
= 1

2
log2

V
(
P̂C3

)

V
(
P̂C3 |PA1 ,PB3

) . (17)

The second term in Eq. (4) is

I
(
PC3 : PEC1 ,PEC2

)
= 1

2
log2

V
(
P̂C3

)

V
(
P̂C3 |PEC1 ,PEC2

) , (18)

which is the maximal mutual information between Eve’s
measurement data and Charlie’s measurement data with
reverse reconciliation. The second term in Eq. (5) is

I
(
PA1 : PEA1 ,PEA2

)
+ I

(
PB3 : PEB1 ,PEB2

)

= 1
2

log2
V

(
P̂A1

)

V
(
P̂A1 |PEA1 ,PEA2

)+1
2

log2
V

(
P̂B3

)

V
(
P̂B3 |PEB1 ,PEB2

) ,

(19)

which gives the maximal mutual information between Eve’s
measurement data and Alice’s and Bob’s measurement data
with direct reconciliation.

B. Coherent attack

In the previous subsection, we analyze the security of our
protocol under individual entangling cloner attacks. But this
is not sufficient to show its unconditional security. In this
subsection, we investigate the security of our protocol against
a more general attack, which is a coherent attack within each
time when Alice, Bob, and Charlie, respectively, send one
qumode to David. Note that a general coherent attack can be
simplified to the coherent attack in Fig. 4 under the assumption
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FIG. 4. EB scheme against a coherent attack.

that Alice, Bob, and Charlie’s input states are, respectively,
permutationally symmetric [23].

Figure 4 shows a coherent attack against our protocol. Eve
takes three qumodes out of his ancillary qumodes, which is
globally a pure Gaussian state, and injects them into three
channels through beam splitters, respectively. The output states
coming out of the beam splitters and the remaining ancillary
qumodes are all stored in Eve’s quantum memory. After
monitoring all the data in public channels, Eve implements
an optimal measurement on these qumodes in the quantum
memory to obtain maximal information.

We use the Holevo bound to quantify the amount of
information Eve can obtain. The secret key rate in the QCC
protocol becomes

KRR
AB = βI

(
XA1 : XB3

)
− H

(
ρEve : XA1

)
, and

KRR
AC = βI

(
XA1 : XC3

)
− H

(
ρEve : XA1

)
,

(20)

where I (XA1 : XB3(C3)) has been given in Eq. (15), and
H (ρEve : XA1 ) = S(ρEve) − S(ρEve|XA1

) denotes the Holevo
information between Eve’s quantum state and Alice’s measure-
ment data XA1 . Here we use S(ρ) to denote the von Neumann
entropy of the quantum state ρ. Since Eve can purify the whole
state ρA1,B3,C3,Eve, we have

H (ρEve : XA1 ) = S
(
ρA1,B3,C3

)
− S

(
ρB3,C3|XA1

)
. (21)

For S(ρA1,B3,C3 ), we can calculate it from a function of the
symplectic eigenvalues ν1,ν2, and ν3 of the covariance matrix
VA1,B3,C3 .

S
(
ρA1,B3,C3

)
= h(ν1) + h(ν2) + h(ν3), (22)

where h(x) := x+1
2 log2

x+1
2 − x−1

2 log2
x−1

2 . For
S(ρB3,C3|XA1

), we have

S
(
ρB3,C3|XA1

)
= h(ν4) + h(ν5), (23)

where ν4 and ν5 are the symplectic eigenvalues of the
covariance matrix VB3,C3|XA1

.
The secret key rate for QSS scheme is

KRR
QSS = βI

(
PA1 ,PB3 : PC3

)
− H

(
ρEve : PC3

)
, (24)

where I (PA1 ,PB3 : PC3 ) has been given in Eq. (17), and

H
(
ρEve : PC3

)
= S(ρEve) − S

(
ρEve|PC3

)

= S
(
ρA1,B3,C3

)
− S

(
ρA1,B3|PC3

)
. (25)

S(ρA1,B3|PC3
) can be calculated from h(ν6) + h(ν7), where ν6

and ν7 are the symplectic eigenvalues of the covariance matrix
VA1,B3|PC3

.
Both the secret key rates for QCC and QSS are functions of

the elements of the covariance matrix VA1,B3,C3 and its reduced
covariance matrix under partial homodyne measurement. In
the following, we show how to obtain the covariance matrix
VA1,B3,C3 .

At the beginning, the whole system is the tensor product of
Alice’s, Bob’s, and Charlie’s TMSS’s and Eve’s globally pure
Gaussian state. Generally, up to local Gaussian operation, the
covariance matrix of Eve’s reduced state ρEA,EB,EC

in Fig. 4
can be given by

VEA,EB,EC =

⎛

⎜⎝
VA G1 G2

G1 VB G3

G2 G3 VC

⎞

⎟⎠, (26)

where

VEA = VEA
I, VEB = VEB

I, VEC = VEC
I,

G1 =
(

g1 0
0 g′

1

)
, G2 =

(
g2 0
0 g′

2

)
,

and G3 =
(

g3 0
0 g′

3

)
. (27)

VEA
,VEB

, and VEC
are the variances of the thermal noise

Eve injects into each channel. g1,g2, and g3 represent the
correlations between the noises Eve adds into the three
channels. Then the covariance matrix of the whole system
can be written as

VA,B,C,Eve =
3⊕

k=1

V′
⊕

VEA,EB,EC
, (28)

where

V′ =
(

V I
√

V 2 − 1Z
√

V 2 − 1Z V I

)

. (29)

Permutate the modes in the covariance matrix VA,B,C,Eve
to make the order of the modes becomes A,EA,B,EB,C,EC .
Applying the conjugate unitary operation on the covariance
matrix VA,EA,B,EB,C,EC

, we obtain the covariance matrix of the
whole state including the modes A1,B1,C1 and Eve’s modes,
that is,

UDavidUEveVA,EA,B,EB,C,EC
UT

EveUT
David. (30)

Here the matrices UDavid and UEve are different from those
given in Eqs. (8)–(11). We must delete the seventh and eighth
rows and columns of the matrices BSA(B,C) in Eq. (9) and
W1(2,3,4) in Eq. (11), to make the dimensions of the matrices
UDavid and UEve match VA,EA,B,EB,C,EC

. Since we want to
obtain the covariance matrix VA1,B3,C3 , we delete the rows and
the columns corresponding to Eve’s modes in the covariance
matrix given by Eq. (30). Then we permutate the modes in
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the order A1,B1,C1,D,E,F , obtaining the covariance matrix
VA1,B1,C1,D,E,F . Using the formula of the reduced covariance
matrix following partial homodyne measurement as shown in
Eq. (14), we get the covariance matrix VA1,B1,C1|XD,XE,PF

. Since
displacement operations don’t change the covariance matrix,
VA1,B1,C1|XD,XE,PF

is the covariance matrix VA1,B3,C3|XD,XE,PF
.

IV. SIMULATION RESULTS

In this section, we simulate both QCC and QSS schemes
against two kinds of attacks according to the state-of-art tech-
nology. The simulation results show that under independent
entangling cloner attacks, the maximal transmission distances
can be significantly enlarged in the case of unbalanced
LA,LB , and LC . But under coherent attacks, the maximal
transmission distances are markedly reduced. By comparing
different entangled attacks, we finally investigate the optimal
coherent attacks in QCC and QSS.

A. Simulation for independent entangling cloner attack

We can replace the transmittance of the beam splitter in
Fig. 3, with a realistic transmission distance in experiment by

using ηA (B,C) = 10−α
LA(B,C)

10 , where LA(B,C) is the transmission
distance from Alice (Bob, Charlie) to David, and α denotes the
coefficient of loss in optical fibers. In the following simulation,
we set the coefficient of loss α = 0.2dB/km.

Besides the transmission distances, the secret key rate
also depends on the variance of Alice’s (Bob’s, Charlie’s)
initial TMSS’s V , the variance of Eve’s TMSS’s VE , and the
reconciliation efficiency β. According to the current state-
of-art experimental technology, we set V = 10 and β = 0.95
in the following simulation. Since larger VE indicates higher
noise in the channel and lower uncertainty for Eve’s estimation,
we set VE = 1 for the pure loss case, VE = 2 for the weak
entangling cloner attack, and VE = 5 for the strong entangling
cloner attack in our simulation.

In QCC, we assume that the transmission distances from
Bob and Charlie to David are equal, i.e., LB = LC , while the
transmission distance from Alice to David, LA, is different
from LB and LC . With reverse reconciliation, when Alice is
close to David, the transmittance ηA = 10−0.2 LA

10 approaches
1, so that little information can be obtained by Eve from

FIG. 5. The maximal transmission distances satisfying the con-
dition KRR

AB(AC) > 10−3. The blue curve is for the case VE = 1; the red
curve is for the case VE = 2; the black is for the case VE = 5.

FIG. 6. The maximal transmission distances satisfying the con-
dition KRR

QSS > 10−3. The blue curve is for the case VE = 1; the red
curve is for the case VE = 2; the black is for the case VE = 5.

Alice’s measurement data. So the secure transmission distance
from Bob and Charlie to David can be significantly increased.
Figure 5 shows the maximal transmission distances of LA and
LB(C) satisfying KRR

AB(AC) > 10−3. With direct reconciliation,
the situation is opposite. To attain a high secret key rate, Bob
and Charlie must be close to David, while Alice can be far
away from David.

In QSS, we consider the case that LA = LB , but LC is
different from LA and LB . With reverse reconciliation, when
LC approaches zero, the transmittance ηC = 10−0.2 LC

10 gets
close to 1, so that Eve can obtain little amount of information
from Charlie’s measurement data. Hence, both the secure
transmission distances LA and LB are greatly enlarged as
shown in Fig. 6. With direct reconciliation, to keep the secret
key rate high, Alice can be far from David, but both Alice and
Bob must be close to David.

The simulation results in both Figs. 5 and 6 show that
imbalanced transmission distances of the three channels lead
to further total maximal transmission distances when Eve
implements the entangling cloner attack.

B. Simulation for coherent attack

To guarantee the matrix VEA,EB,EC in Eq. (26) a valid
covariance matrix, for any thermal noise VEA

,VEB
,VEC

! 1,
g1,g2, and g3 must satisfy the bona fide condition [24], that
is, ν2

− ! 1, where ν− is the smallest symplectic eigenvalue of
the matrix VEA,EB,EC . The symplectic eigenvalue spectrum of
the matrix VEA,EB,EC equals to the eigenvalue spectrum of the
matrix |i'VEA,EB,EC |, where

' =
3⊕

k=1

(
0 1

−1 0

)

. (31)

The secret key rates depend on the transmission distances,
the variance of Alice (Bob, Charlie)’s TMSS’s V , the thermal
noise Eve injects in each channel, denoted by VEA

,VEB
, and

VEC
, the correlations between the noises in the three channels,

represented by g1,g2, and g3, and the reconciliation efficiency
β. Here we set V = 10 and β = 0.95, same as above.

To minimize the secret key rate in Eq. (1), Eve only needs
to concentrate on attacking the communication either between
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FIG. 7. The accessible values of g1 and g3 satisfying the bona
fide condition when VEA

= VEB
= VEC

= 2. The red region shows
the values of g1 and g3, with which ρEA

is bipartitely entangled with
ρEB

and ρEC
, respectively. The green region shows the values of g1

and g3, with which ρEB
and ρEC

are entangled.

Alice and Bob, or between Alice and Charlie using the optimal
“negative EPR attack,” which has been defined in Refs. [3,25].

Another case, which has not been investigated before, is
that Eve intends to reduce the secret key rates KAB and KAC
simultaneously, such that Alice can securely communicate
neither with Bob, nor with Charlie. To do this, one way for
Eve is to apply the symmetric attack in Bob’s and Charlie’s
channels, which means that interchanging ρEB

and ρEC
leaves

Eve’s attack invariant, i.e., VEB
= VEC

and g1 = g2. We keep
VEB

= VEC
and g1 = g2 in the following simulation for QCC.

We find that the bona fide condition in this symmetric case
becomes

4g2
1 + g2

3 − V 2
EA

− V 2
EC

+
√

8g2
1

[
g2

3−
(
VEA

−VEC

)2]+
(
g2

3 + V 2
EA

− V 2
EC

)2 " −2.

(32)

A numerical example of the accessible values of g1 and g3
satisfying the bona fide condition is shown by the colored
region in Fig. 7. We divide this colored region into three
subregions by checking the separability of each two modes in
their reduced states using the positive partial transpose (PPT)
criterion [26]. In the red region, ρEA

is entangled with ρEB

and ρEC
, respectively. In the green region, ρEB

and ρEC
are

entangled. In the pink region, ρEA
,ρEB

, and ρEC
are pairwise

separable.
In the left red region, the fluctuations of X̂EA

− X̂EB

and X̂EA
− X̂EC

are amplified. Injecting this kind of noise
results in the increase of the fluctuations of X̂A1 − X̂B3 and
X̂A1 − X̂C3 . In the bottom green region, the fluctuation of
X̂EB

− X̂EC
is amplified. Injecting this kind of noise makes the

fluctuation of X̂B3 − X̂C3 increase. For both cases, the secret
key rate is declined. Referring to the discussion in Ref. [3,25],
the entanglement corresponding to the left red region and
the bottom green region is “bad” entanglement. Whereas, the

FIG. 8. The maximal transmission distances satisfying KRR
AB(AC) >

0 when VEA
= VEB

= VEC
= 2. The blue curve is the attack with

minimal g1 and vanishing g3. The red curve is the attack with minimal
g3 and vanishing g1. The black curve is the attack with g1 = g3 = 0.

entanglement corresponding to the right red region and the
top green region helps increasing the key rate, which we call
“good” entanglement. To minimize the secret key rate, Eve
needs to maximize the “bad” correlation between the noises
in each channel. Thus, the optimal attack must lie in the blue
contour curve in Fig. 7.

We first compare two maximally entangled attacks with the
independent attack. The first entangled attack corresponds to
the left-most point in the red region, where g1(g2) is minimized
and g3 = 0. The second entangled attack corresponds to the
down-most point in the green region, where g3 is minimized
and g1 = 0. The independent attack corresponds to the origin
given by g1 = g3 = 0. The simulation results of these three
attacks are given in Fig. 8. It indicates that entangled attacks
perform better than the independent attack and the attack with
minimal g1 and zero g3 is stronger than the other two attacks.

But the attack with minimal g1 and zero g3 is not a general
optimal attack. For instance, in the case shown by Fig. 9, when
LA is short, the attack corresponding to the dashed green curve
performs better than the attack with minimal g1 and vanishing

FIG. 9. The maximal transmission distances satisfying KRR
AB(AC) >

0 when VEA
= 1.5 and VEB

= VEC
= 3. The blue curve is the attack

with g1 minimized and g3 vanishing; the red curve is the attack with
g1 vanishing and g3 minimized; the dashed green curve is the attack,
where g1 equals 2/3 times of its minimal value and g3 saturates the
bona fide condition in Eq. (32).
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FIG. 10. The maximal tolerable thermal noises satisfying
KRR

AB(AC) > 0 when LA = 1 km and LB = LC = 3 km. The blue curve
is the attack with g1 minimized and g3 vanishing; the black curve
is the attack with g1 vanishing and g3 minimized; the dashed green
curve is the attack, where g1 equals half of its minimal value and g3

saturates the bona fide condition in Eq. (32).

g3, shown by the blue curve. We cannot give a universal optimal
attack strategy of g1 and g3 for all the cases. The values of g1
and g3 to achieve optimal attack depend on the transmission
distance of each channel and the thermal noise in each channel.

In Figs. 8 and 9, we fix the thermal noise in each
channel to see the maximal transmission distances. Now
we fix the transmission distances to look at the maximal
tolerable thermal noise in each channel. Figure 10 gives
the simulation when LA = 1 km and LB = LC = 3 km. The
simulation result indicates that the maximal tolerable VEA

and
VEB (C) is markedly asymmetric.

For QSS, we consider the symmetric case where the
transmission distances of Alice’s and Bob’s channels are equal,
LA = LB , and that the attacks in Alice’s and Bob’s channels
are the same, VEA

= VEB
and g2 = g3. It implies that after

FIG. 11. The accessible values of g1 and g2(g3) satisfying the
bona fide condition when VEA

= VEB
= VEC

= 2. The red region
shows the values of g1 and g2(g3), with which ρEC

is entangled with
ρEA,EB

. The blue region shows the values of g1 and g2(g3), with which
ρEC

and ρEA,EB
are separable.

FIG. 12. The maximal transmission distances satisfying KRR
QSS >

0 when VEA
= VEB

= 2 and VEC
= 3. The blue curve is the attack

with minimal g2(g3) and vanishing g1; the red curve is the attack
with vanishing g2(g3) and minimal g1; the black curve represents
independent attack with g1 = g2 = g3 = 0.

Charlie distributes the secret to Alice and Bob, both of them
can obtain the same amount of information about the secret.
We keep VEA

= VEB
and g2 = g3 in the following simulation

for QSS.
A numerical example of the accessible values of g1 and g3

is shown in Fig. 11. By using the PPT criterion, we divide the
colored region further into two subregions. ρEC

and ρEA,EB
are

separable in the blue region and entangled in the red region.
For the entangled states in the left red region, the fluctuations
of P̂EA

+ P̂EC
and P̂EB

+ P̂EC
are simultaneously amplified,

which makes the fluctuation of P̂A1 + P̂B3 + P̂C3 increase. So
it is “bad” entanglement, helping Eve to decrease the secret
key rate. Whereas the entanglement in the right red region is
“good” entanglement, helping to increase the secret key rate.
For any VEC

and VEA
, the optimal attack corresponds to the

attack with minimal g3 and vanishing g1. In the optimal attack,
ρEC

and ρEA,EB
are maximally entangled.

We compare the optimal attack with the other two attacks.
One is the independent attack given by g1 = g3 = 0. The other
attack is the attack with minimal g1 and vanishing g3, in
which, ρEA

and ρEB
form an EPR pair and ρEC

is independent.
Figure 12 shows the maximal transmission distances of LA(B)
and LC under these three attacks when VEA

= VEB
= 2 and

VEC
= 3. It’s easy to see that the attack with minimal g3

performs better than the other two attacks.

V. CONCLUSION

This paper investigates CV MDI multipartite quantum
communication, where detector side attacks are removed
from the side of each party participating in the quantum
communication. Our protocol can implement both QCC and
QSS. The security against the entangling cloner attack and the
coherent attack is analyzed, respectively. Under the entangling
cloner attack, the maximal transmission distances can be
significantly enlarged in the case of unbalanced distribution.
Compared with the entangling cloner attack, the coherent
attack reduces the maximally transmission distances markedly.
Finally, we study the optimal coherent attacks in QCC and
QSS, respectively.
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[10] M. Hillery, V. Bužek, and A. Berthiaume, Phys. Rev. A 59, 1829

(1999).
[11] D. M. Greenberger, M. A. Horne, and A. Zeilinger, in Bell’s

Theorem, Quantum Theory and Conceptions of the Universe,
edited by M. Kafatos (Springer, New York, 1989), pp. 69–72.

[12] P. van Loock and A. Furusawa, Phys. Rev. A 67, 052315 (2003).
[13] J. Jing, J. Zhang, Y. Yan, F. Zhao, C. Xie, and K. Peng,

Phys. Rev. Lett. 90, 167903 (2003).
[14] T. Aoki, N. Takei, H. Yonezawa, K. Wakui, T. Hiraoka, A.

Furusawa, and P. van Loock, Phys. Rev. Lett. 91, 080404
(2003).

[15] J. Zhang and S. L. Braunstein, Phys. Rev. A 73, 032318 (2006).
[16] P. van Loock and S. L. Braunstein, Phys. Rev. A 61, 010302

(1999).
[17] R. E. S. Polkinghorne and T. C. Ralph, Phys. Rev. Lett. 83, 2095

(1999).
[18] A. Heidmann, R. J. Horowicz, S. Reynaud, E. Giacobino, C.

Fabre, and G. Camy, Phys. Rev. Lett. 59, 2555 (1987).
[19] C. E. Shannon, Bell Labs Tech. J. 28, 656 (1949).
[20] R. Garcı́a-Patrón, Ph.D thesis, Université Libre de Bruxelles,
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