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Generation of path-polarization 
hyperentanglement using quasi-
phase-matching in quasi-periodic 
nonlinear photonic crystal
Guangqiang He1,2, Chengrui Zhu1, Yao Jiang1, Jie Ren1, Ying Guo3 & Jietai Jing2

A compact scheme for the generation of path-polarization entangled photon pairs is proposed by using 
a quasi-periodic nonlinear photonic crystal to simultaneously accomplish four spontaneous parametric 
down-conversion processes. Moreover, we report experimental scheme to measure the polarization 
entanglement and path entanglement separately and theoretically get numerical results that verify 
some predictions about the hyperentanglement. This method can be expanded for the generation of 
multi-partite and two-photon path-polarization hyperentanglement in a single quasi-periodic nonlinear 
photonic crystal structure. This compact quantum light source can be used as a significant ingredient in 
quantum information science.

Entanglement plays a key role in the applications of quantum information science such as quantum cryptography1,  
quantum teleportation2 and dense coding3. Consequently, to create and manipulate entanglement using an inte-
grated quantum light source has been a defining experimental goal in recent years.

One solid strategy resorts to quasi-phase matching (QPM) of spontaneous parametric down-conversion 
(SPDC) processes4 in a designed nonlinear photonic crystal (NPC) since it avoids bulky and complex experimen-
tal elements. This method has been applied to create some kinds of entanglements such as two-photon polari-
zation entanglement5, single-photon entanglement6, path entanglement7, etc. However, the NPCs used in these 
schemes are periodic. One limitation is that they are usually used to phase match only processes whose mismatch 
vectors are integer multiples of a single vector (in 1D case) or a vectorial sum of only two base vectors (in 2D 
case). Consequently, a single periodic NPC structure is not usually used to simultaneously phase match multiple 
SPDCs. So we adopt the engineering of quasi-periodic NPCs8, 9, which provides greater design flexibility for phase 
matching several different SPDCs and thus provides more possibilities in entanglement generation.

We are inspired by the notion of hyperentanglement10, which refers to the entanglement at multiple degrees of 
freedom (DOFs) such as polarization, frequency, energy time, etc. Specifically, we focus on producing hyperen-
tanglement at the polarization and spatial mode by using a single designed quasi-periodic NPC to phase match 
several SPDCs. This method not only incorporates the many applications of path-entanglement including quan-
tum precise phase measurement11, super-resolution quantum lithography11, and encoding of multilevel systems 
in spatial mode of single photon12, 13, but also expands the Hilbert space, thereby provides advantages in many 
parts of quantum information science such as enlarging the channel capacity in super dense coding14, enhancing 
the security of quantum crytography15, 16, and assisting complete Bell-state discrimination17, 18. Moreover, theoret-
ically, this method enables to create multiple spatial modes (larger than two) in the path-polarization hyperentan-
glement in a single quasi-periodic NPC instead of using different cascaded periodic NPCs as in some generation 
schemes of path entanglement7. So this method can be seen as a more compact scheme.

This paper is arranged as follows. In results, we describe the generation of path-polarization hyperentangled 
photon pairs by using QPM of 4 SPDC processes in a designed quasi-period NPC. The design parameters of 
the NPC, its structure and its Fourier transform are given. The experimental setup is given which incorporates 
Hong-Ou-Mandel quantum inference measurements19, 20. As to this setup, numerical simulation results are given 
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which verify our predictions about the hyperentanglement. In discussion, we discuss how the basic model can be 
expanded for the generation of multi-partite and two-photon path-polarization hyperentanglement. In method, 
we introduce the principle of designing the crystal.

Results
Generation of path-polarization hyperentangled photon pairs. The schematic for the generation of 
path-polarization hyperentangled photon pairs is displayed in Fig. 1. We have a pump photon with the frequency 
of ωp injected into the designed NPC—in which it will get through either of the 4 SPDC processes— and the 
signal and idler photons with frequency ωp/2 are assumed to be generated in our engineering. From an intuitive 
perspective, the signal and idler photons are firstly polarization entangled; and since they come out from either of 
the two spatial modes shown in Fig. 1(a), they are also path entangled.

The NPC displayed in Fig. 1(a) is designed to simultaneously accomplish QPM of the 4 different SPDC pro-
cesses. The QPM condition can be depicted by Fig. 1(b). kpo represents the wave vector of the pump light (o light); 
ks o e( )1

, k i e o( )1
, ks o e( )2

 and k i e o( )2
 represents the wave vectors of Signal1 (o light or e light), Idler1 (e light or o light), 

Signal2 (o light or e light) and Idler2 (e light or o light) respectively. The mismatch vectors are described as
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To illustrate our design method we have proposed, we are going to take an example with specific parameter 
values. It must be noted that, these specific parameter values are just used to justify our theory in calculation, 
maybe the values are not suitable for a realistic case. However, if necessary, we can design the lattice with appro-
priate parameter values in any realistic case, including wavelength, temperature, directions of the wave vectors 
and so on. Thus there is no loss of generality.

we consider a very typical laser, Nd:YAG laser, whose wavelength is 532 nm. Now we set the wavelength of the 
pump light as 532 nm and that of the signal and idler light is 1064 nm. The direction of the wave vectors of beams 
k k k k k, , , ,po s o e i e o s o e i e o( ) ( ) ( ) ( )1 1 2 2

 are 0°, 58°, −58°, 74°, −74° respectively. Periodically poled lithium niobat 
(PPLN) is chosen as the NPC material and the working temperature is 21 °C. We adopt sellmeier equations under 
this condition21 and figure out the mismatch vectors as
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Through engineering of the PPLN NPC89 to accomplish QPM of the mismatch vectors, the structure of PPLN 
NPC is depicted by Fig. 2(a) and the tiling vectors shown in Fig. 2(a) are
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Each red dot with radius of 1 µm in Fig. 2(a) is called motif9. Figure 2(a) actually depicts the distribution of 
nonlinear coefficient χ(2) in the PPLN NPC, which is obtained by the convolution between the quasi-periodic 
lattice and motif. In the motif (red dot) χ(2) = 1 while χ(2) = −1 in other areas of the PPLN NPC. We can also 

Figure 1. (a) Schematic for the generation of path-polarization hyperentangled photon pairs. NPC is designed 
to qusi-phase-matching 4 SPDC processes. The pump photon with frequency of ωp is injected into the designed 
NPC and gets through either of the 4 SPDC processes. Consequently, in our engineering, the path-polarization 
hyperentangled signal and idler photon with frequency of ωp/2 should be emitted from the NPC. (b) QPM 
condition for the 4 SPDC processes in generation of path-polarization hyperentangled photon pairs.
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express the PPLN NPC structure mathematically as = × ⊗g a u sr r r r( ) ( ) ( ( ) ( )), where a(r) denotes the total area 
of the PPLN NPC, u(r) is a sum of delta functions and denotes the lattice function, s(r) denotes the motif func-
tion, ⊗ is convolution operator. The Fourier transform of the PPLN NPC determines the conversion efficiency of 
the SPDC processes and can be written as refs 8 and 9

∫ ∫χ

χ

= = ⊗ × = ∆ ⊗

= ∆
⎧
⎨
⎪⎪

⎩
⎪⎪

⊗
⎡

⎣
⎢
⎢
⎢

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎤

⎦
⎥
⎥
⎥

⎫
⎬
⎪⎪

⎭
⎪⎪

⋅ ⋅G FT g U A S U e d r e d r

SA J kR
kR

U sinc k L sinc
k L

k r k k k k

k

( ) { ( )} ( ) ( ) ( ) ( ( ) )

2 ( ) ( )
2 2

,
(4)

a
i

s
i

x x y y

r
k r

r
k r

( )
2

( )
2

1

where =k k , kx, ky indicate the x and y components of k, χ∆  is the absolute difference between the positive and 
negative values used for χ(2), J1 is the first Bessel function, S is a circle of radius µ=R m1 , A is a rectangle of sides 
Lx × Ly—which indicates the total area of PPLN NPC (Lx = 0.5 mm, Ly = 2.5 mm in our engineering), U(k) is the 
Fourier transform of lattice function u r( ) and is the sum of delta functions. Figure 2(b) depicts the Fourier trans-
form of the PPLN NPC. We can clearly distinguish Bragg peaks at the positions of the required mismatch vectors 
∆ ∆ ∆ ∆k k k k, , ,e o e o1 1 2 2 , while there are no Bragg peaks at unwanted positions—which shows desirable conver-
sion efficiency of SPDC processes in this PPLN NPC. Near the required mismatch vectors, the Fourier transform 
can also be written as
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where j = 1, 2, ∆ = − ∆k k k je o( ), ∆ = ∆k kje o je o( ) ( ) , ∆kx and ∆ky indicate the x and y components of ∆k. Note 
here that if more spatial modes are introduced–which implies more SPDC processes to achieve–we can prevent 
the decrease of SPDC efficiency by promoting the size of our designed PPLN

Under the first-order perturbation approximation22, through the QPM of 4 SPDC processes in the designed 
PPLN NPC, the two-photon state can be written as

∫∑ψ α υ φ υ
ω

υ
ω

υ φ υ
ω

υ
ω

υ=
⎡

⎣
⎢
⎢

⎛
⎝
⎜⎜ + ⎞

⎠
⎟⎟⎟

⎛
⎝
⎜⎜ − ⎞

⎠
⎟⎟⎟ + ⎛

⎝
⎜⎜ + ⎞

⎠
⎟⎟⎟

⎛
⎝
⎜⎜ − ⎞

⎠
⎟⎟⎟

⎤

⎦
⎥
⎥=

ˆ ˆ ˆ ˆ† † † †d a a a a( )
2 2

0 ( )
2 2

0 ,
(6)k

eo
k

s e
p

i o
p

oe
k

s o
p

i e
p

0
1

2

k k k k

α0 in the equation is a normalization constant. Subscript eo and oe indicate the polarization of the signal and idler 
photons. Subscript k represents the spatial mode. The numerical two-photon mode function φ υ( )eo

k  and φ υ( )oe
k  can 

be obtained from the Fourier transform of the PPLN NPC near the required mismatch vectors which is expressed 
by Eq. (5) (φ υ φ υ= ∆ = ∆G Gk k( ) ( ), ( ) ( )eo

k
ke oe

k
ko ). And the relationship between the detuning frequency υ and ∆k 

is

Figure 2. (a) Structure of the PPLN NPC. Scale is in µm, drawn with an aspect ratio of approximately 1:25. The 
arrows indicate the four tiling vectors a(i) (i = 1, 2, 3, 4). Note that for clarity the PPLN NPC structure is partially 
depicted and the total area is 50 µm × 700 µm. (b) Fourier transform G(k) of the PPLN NPC. Scale is in µm−1. 
The arrows indicate the mismatch vectors ∆ ∆ ∆ ∆k k k k, , ,e o e o1 1 2 2 .



www.nature.com/scientificreports/

4Scientific RepoRts | 7: 4954  | DOI:10.1038/s41598-017-05271-7

υ
θ θ υ θ

ω

θ
ω

υ
θ θ υ θ

ω

θ
ω

∆ =
⎡

⎣

⎢
⎢
⎢

−
⎤

⎦

⎥
⎥
⎥

+

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

+
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

⎤

⎦

⎥
⎥
⎥
⎥
⎥

∆ =
⎡

⎣

⎢
⎢
⎢

−
⎤

⎦

⎥
⎥
⎥

+

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

+
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

⎤

⎦

⎥
⎥
⎥
⎥
⎥

ω
ω

ω
ω

ω
ω

ω
ω

=

=

=

=

u u
d

d u

d
d u

u u
d

d u

d
d u

k

k

cos cos
2

cos 1

cos 1 ,

sin sin
2

sin 1

sin 1 ,

(7)

x
s e o

ge o

i o e

go e
s e o

e o

i o e
o e

y
s e o

ge o

i o e

go e
s e o

e o

i o e
o e

( )

( )

( )

( )

2

( )
( )

2

( )
( )

2

( )

( )

( )

( )

2

( )
( )

2

( )
( )

2

k k
k

p

k
p

k k
k

p

k
p

where θs e o( )k
 indicates the angle between ks e o( )k

 and x axis, θi o e( )k
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 is group velocity of the signal or idler (e light or o light). Equation 6 can be simplified and 

written as
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This is aptly the required path-polarization hyperentanglement. Note that it is significant to match the effi-

ciency of SPDC processes of different spatial modes because it will achieve maximally entangled states. However 
to date, there is no general design methods available to achieve this condition which means that this condition can 
only be achieved in some selected cases of us.

We design an experimental scheme and the criterions23 to verify the path and polariztion entanglement sepa-
rately. The experiment setup is shown in Fig. 3.

In Fig. 3, Êsk
 and Êik (k=1, 2) stand for the signal and idler light fields generated from SPDC processes in the 

PPLN NPC. They are expressed as
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Figure 3. Experimental setup which is used to verify path and polarization entanglement. BS1 and BS2 are 
beam splitters with transmission coefficient T = 0.5. To verify path and polarization entanglement, we collect 
coincidence counting from detectors while adjusting prisms and polarizers.
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The phase relation, β1 between s1, s2 and β2 between i1, i2, can be set by tilting two prisms. And we have 
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where j = 1, 2. Without loss of generality, we show theoretically the detected result at D1, D2 after classical inter-
ference at BS1 and D3, D4 after classical interference at BS2. The polarizers are temporarily removed so that all 
polarization components are included. To verify the path entanglement, the coincidence count of detectors D1 
and D3 is measured, which is proportional to the expected value of the opeartor ˆ ˆ ˆ ˆ† †E t E t E t E t( ) ( ) ( ) ( )c i c s c s c i3 1 1 3

.
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Here we introduce a phase difference ∆ = −t t ts s s1 2
, ∆ = −t t ti i i1 2

. After submitting the numerical 
two-photon mode function to Eq. (18), approximately we have

ω β β∝ . + ⋅ ∆ − ∆ + − .C c c t t( , ) 1 02 cos( /2 ( ) ) (19)p s i1 3 1 2

We can get coincidence counts of (D1, D4), (D2, D3) and (D2, D4) by the same method. The expected coinci-
dence count can be written as
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The entangled state ψ  can be adoped to test the violation of a Bell inequality24 with ∆ = ∆ =t t 0s i . The 
parameter Sk is expressed as
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The expected value, = . >S 2 357 2k , verifies the path entanglement between s1, i1 and s2, i2.

Then we discuss the measurement of polarization entanglement25. The evolution of operators in Polarizer1 
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[( ( )) cos( )sin( ) ( ( )) sin( )cos( )]
(28)
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Submit the numerical two-photon mode function, the result can be expressed as

ω β β θ θ

′ ′

∝ ⎡
⎣⎢ . + ⋅ ∆ + ∆ + + ⎤

⎦⎥ + .

′ ′ˆ ˆ ˆ ˆ† †E t E t E t E t

t t

( ) ( ) ( ) ( )

1 02 cos( /2 ( ) ) sin ( ) (29)

c i c s c s c i

p s i 1 2
2

1 2

3 1 1 3

Note here that the effect of Prism1 and Prism2 (β1 and β2) can be used to compensate for the phase difference 
between the signal photons (∆ts) and that between idler photons (∆ti). Specifically, we need to adjust 
Prism1(Prism2) until the classical interference at BS1(BS2) results in a peak detected intensity at D1 (D2). After phase 
difference compensating, when θ θ =( ) 02 1 , the relation between Coincidence Counting of D1, D2 and θ1(θ2) can be 
depicted by Fig. 4(a)—in which the interference fringes with visibility of 100% prove the polarization entanglement. 
We use γ∆ 1 and γ∆ 2 to represent transmission errors of BS1 and BS2. Moreover, if transmission error of BS is taken 
into account, we have the transmission coefficient of BS1 to be π γ+ ∆sin( /4 )1 , and that of BS2 to be π γ+ ∆sin( /4 )2 . 
Consequently,  π γ π γ′ = + ∆ + ∆W W2cos ( /4 ) sin ( /4 )1

2
1

2
2 1,  π γ π γ′ = + ∆ + ∆W W2 cos ( /4 ) sin ( /4 )2

2
2

2
1 2 , 

π γ π γ π γ π γ′= +∆ +∆ +∆ +∆W W2 cos( /4 ) cos( /4 ) sin( /4 ) sin( /4 )3 1 2 1 2 3 ,  π γ π γ′= + ∆ +∆W 2 cos( /4 ) cos( /4 )4 1 2  
π γ π γ+ ∆ + ∆ Wsin( /4 ) sin( /4 )1 2 4. W1 and W2 (W3 and W4) are affected by the same manner.
Figure 4(b) and Fig. 4(c) depict the relation between normalized coincidence counting and angular settings of 

polarizers and shows the visibility, V = 1. Two photon coincidence counting can be measured by using the angular 
setting θ1 = 0, θ = π⁎

1 4
 and θ = π

2 8
, θ = π⁎

2
5
8

. The expected value, = . >S 2 828 2k , verifies the polarization entan-
glement between signal and idler.

Discussion
Multi-partite and two-photon path-polarization hyperentanglement. Equation (8) illustrates the 
proposed path-polarization hyperentanglement. This is a basic 4-SPDC model and some adjustments to the NPC 
engineering will give new forms to the hyperentanglement. For example, if the engineering of NPC incorparates 8 
SPDC processes instead of 4, the QPM condition can be illustrated by Fig. 5(a). And the result is that the number 
of spatial modes becomes 4 instead of 2, which implicates that the path entanglement part in the hyperentangle-
ment changes from 4-partite to 8-partite. It can be described as
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ψ = +

+ +

+ +

+ + .

C HV C VH

C HV C VH

C HV C VH

C HV C VH

( ) 1 1 0 0 0 0 0 0

( ) 0 0 1 1 0 0 0 0

( ) 0 0 0 0 1 1 0 0

( ) 0 0 0 0 0 0 1 1 (30)

eo oe s i s i s i s i

eo oe s i s i s i s i

eo oe s i s i s i s i

eo oe s i s i s i s i

1 1

2 2

3 3

4 4

1 1 2 2 3 3 4 4

1 1 2 2 3 3 4 4

1 1 2 2 3 3 4 4

1 1 2 2 3 3 4 4

Theoretically, if multiple paths are established, multi-partite path-polarization entanglement can be generated. 
Moreover, if there are still 4 designed SPDC processes but the signal and idler are designed to be emitted from the 
same path, the QPM condition can be illustrated by Fig. 5(b).

Method
Designing a proper crystal is a key point for phase matching 4 SPDC processes. A general method to design fre-
quency converters that will phase match any set of interacting waves is provided by the so-called generalized dual 
grid method (DGM)9. In this method, a dual structure, called the dual grid, which contains all the topological 
information required to built the quasi-crystal is first constructed. Then, using a simple transformation, this dual 
grid is transformed to a quasi-crystal. The Dual Grid Method can be adapted to match different processes. For 
different processes, the only thing you need to do is changing the mismatch vectors. Moreover, the Dual Grid 
Method could be implemented by a computer program, which is convenient to design a crystal.
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