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Abstract Whispering gallery microresonator (WGM) filled with nonlinear material has
proven to be valuable for enhancing nonlinear optical effects. Here we explore the pro-
duction of the pump-signal-idler tripartite entanglement based on the integrated high-Q
whispering gallery mode cavities filled with lithium niobate. Our theoretical analysis about
the entanglement condition when the van Loock and Furusawa criteria are violated paves
the way for future investigation of integrated entanglement based on nonlinear high-Q
microresonator. In addition, we present parameters used in our designed generator and our
theoretical model is highly expansible to further exploration of entanglement over general
χ (2) whispering gallery microresonator.

Keywords High-Q χ (2) whispering gallery microresonator · Tripartite entanglement

1 Introduction

Quantum computation is expected to provide exponential speedup for particular math-
ematical problems such as integer factoring, quantum system simulation and quan-
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tum information processing [1]. Quantum cryptographic communication, on the other
hand, provides an absolutely safe way to pass information without the risk of eavesdropping
[2].

In the center of both quantum computation and quantum communication lies the con-
cept of quantum entanglement, therefore the generation of multipartite entanglement always
draws wide attention. Many works are related to this field [3–8]. Conventionally, entangled
photon pairs are generated in χ (2) bulky crystals that are usually difficult to operate and
susceptible to environmental perturbations. It is recently proposed that entangled photon
pairs can also be generated from monolithic microresonators of whispering-gallery type [6]
via four-wave mixing (FWM) processes in χ (3) materials [7] and all optical squeezing in
an on-chip monolithically integrated complementary metal oxide semiconductor (CMOS)
compatible platform is observed [8].

In a whispering-gallery resonator, whispering-gallery modes of discrete propagation
constant are guided by continuous total internal reflection along a curved surface. WGM
resonators have the strengths of high confinement to the optical field, exceptionally high
quality factor, and compatibility to compact, chip-scale integration, so they have been
replacing χ (2) bulky crystals in many other applications of laser optics recently [9–12].

The χ (2) parameter is usually about two orders higher than χ (3), so the former paradigm
enjoys a much more significant nonlinear effect, and therefore, achieves entanglement more
easily. In this paper, we propose a theoretical model for generation of a tripartite quantum
entanglement from a whispering gallery mode, and exhibit the design parameters over χ (2)

medium, paving the way for future optical quantum computation on chips.

2 System Model

Our generator scheme is shown in Fig. 1. A narrow linewidth tunable CW laser followed by
EDFA and BPF is continuously pumped into the microresonator to intrigue nonlinear effect
in the whispering gallery mode cavity filled with lithium niobate (LN). PC is used to control
the polarization of input pump laser. Once the nonlinear effect produces different frequen-
cies photons compared with pump wave, we could utilize AWG to separate these beams to
analyse their characteristics. The ring cavity is used for our entanglement detection [13].

The resonator we used is a integrated cavity filled with LN medium and the origi-
nal photons annihilation and new photons occurrence originate from spontaneous para-
metric down conversion (SPDC) effect. The coupling coefficient g of our system is

Fig. 1 Tripartite entanglement generator with LN WGM and angle-polished fiber coupling. Tunable CW
Laser, Tunable continuous-wave laser; EDFA, Erbium-doped fiber amplifier; BPF, bandpass filter; PC,
polarization controller; AWG, arrayed waveguide grating
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g = 2πωs
χ (2)

εs

Vsip
Vs

√
2π!ωp

εpVp
[14]. Once we determine the coupling coefficient, the Hamiltonian

for our system is found to be

H = Hpump +Hint +Hfree, (1)

Hpump = i!a†pεp +H.c., (2)

Hint = i!
(
gapa

†
s a

†
i

)
+H.c., (3)

Hfree = !
∑

k

ωka
†
kak. (4)

Due to the momentum conservation among the interacting photons, microresonator con-
verts the pump wave into two different frequency waves ωp → ωs + ωi . Besides, in the
microresonator, there might be other sorts of nonlinear effect happens. However, owing to
the smaller intensities and larger phase mismatch, we thus neglect those processes in our
analysis.

A microresonator is an open system since it not only exhibits intrinsic scattering loss with
a photon decay rate of γk0 (for mode k), but also couples waves to the coupling waveguide
with an external coupling rate of γkc. In order to describe such an open system, we present
the loss and out-coupling terms as

Lkρ = γk

(
2akρa

†
k − a†kakρ − ρa†kak

)
, (5)

where ρ stands for the density matrix of system and γk = γkc + γk0 represents the damping
rate of the loaded cavity. Then the output field is determined by the well-known input-output
relation given as [15]

bout − bin = √
γ a (6)

in which b is the boson annihilation operator for the bath field outside the cavity.

3 Equations Of Motion For The Full Hamiltonian

As for the system model presented previously, whole procedure could be governed by the
following master equation

∂ρ

∂t
= − i

!
[Hpump +Hint , ρ] +

3∑

k=1

Lkρ . (7)

The free Hamiltonian has been omitted here in (7) because of adding an rotating-wave
approximatione−ωk t in it [15].

To solve the master equation, we consort the Fockker-Planck equation in P representation
which could be shown as a stochastic differential equation [16]

∂α

∂t
= F + Bη, (8)

where α = [αp,αs ,αi ,α
∗
p,α

∗
s ,α

∗
i ]T and F = [f, f ∗]T stands for the main part of the

system evolution. f is given as

f =

⎛

⎝
gαsαi − εp + γpαp

−gαpα∗
i + γsαs

−gαpα∗
s + γiαi

⎞

⎠ .
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Matrix B is the noise terms which could be obtained by the relationship BBT = D. D
matrix we introduced here stands for the diffusion matrix, which is given by

D =
(
d 0
0 d∗

)
,

where d is given by

d =

⎛

⎝
0 0 0
0 0 gαp

0 gαp 0

⎞

⎠ .

In (8), η = [η1(t), η2(t), η3(t), c.c]T , where ηi are real noise terms which is determined
by ⟨ηi (t)⟩ = 0 and

〈
ηi (t)ηj (t)

〉
= δij δ(t − t ′).

4 Linearized Quantum-Fluctuation Analysis

In order to solve (8), we convert the system variables into their steady-state(classical) val-
ues and quantum fluctuations as αk = Ak + δαk . Due to the facts that quantum fluctuations
are enough small compared with steady-state, thus it’s reasonable for us to utilize the lin-
earisation analysis to find the spectra for the cavity outputs. To simplify the calculation, we
assume the s and i photons share the same photon decay rate and identical coupling coef-
ficient (γs = γi , γsc = γic, γs0 = γi0). And As indicates the steady state for signal wave
and Ai is on behalf of idler wave steady state. As a result, (8) could be rewritten as owing
to assumption that ∂A

∂t = 0,

∂A+ δα

∂t
= ∂δα

∂t
, (9)

∂δα

∂t
= F + Bη = f (A)+ f (A, δ)+ Bη. (10)

Firstly we complete the steady-state solution by setting the f (A) = 0. f (A) is given below,

f (A) =

⎛

⎜⎜⎜⎜⎜⎜⎝

gAsAi − εp + γpAp

−gApA
∗
i + γsAs

−gApA
∗
s + γiAi

gA∗
sA

∗
i − εp + γpA

∗
p

−gA∗
pAi + γsA

∗
s

−gA∗
pAs + γiA

∗
i

⎞

⎟⎟⎟⎟⎟⎟⎠
.

The pump threshold is given by εth = γp
√
rs ri
g .When ε < εth, the steady states are given as

Ap = ε/γp, (11)

As = 0, (12)

Ai = 0. (13)
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When ε > εth, the steady states are given as

Ap =
√
rsri

g
, (14)

As =
√
(ε − rpAp)ri

g2Ap
, (15)

Ai = gApAs

ri
. (16)

Notice that, there is a threshold for pump wave and if the pump wave power is below the
threshold, there would be no steady solution for signal wave and idler wave. Thus here we
only consider the situation that the field modes oscillate above the threshold.

Once we get the steady states outcomes for each photon mode, we put them back into
the (8) and get the new simplified equation

∂δα

∂t
= f (A, δ)+ Bη = Mδα + Bη (17)

in which δα = [δαp, δαs , δαi , δα
∗
p, δα

∗
s , δα

∗
i ]T . M is the drift matrix given by

M =
(
m1 m2
m∗

2 m∗
1

)
,

where m1 and m2 is

m1 =

⎛

⎝
γp gAi gAs

−gAi γs 0
−gAs 0 γi

,

⎞

⎠

m2 =

⎛

⎝
0 0 0
0 0 −gAp

0 −gAp 0

⎞

⎠ .

For the validity of linearised quantum-fluctuation analysis, the quantum-fluctuation must
be small enough compared with mean values. If the requirement that the real part of the
eigenvalues of −M stay non-negative is satisfied, the fluctuation equations will describe
an Ornstein-Uhlenbeck process [17], for which the intracavity spectral correlation matrix is
given by

S(ω) = (−M + iωI )−1D(−MT − iωI )−1. (18)

This matrix involves all the correlations required to study the measurable extracavity spectra
and we have checked the stability numerically in the rest of discussion.

We introduce the quadrature operators for each mode in order to discuss the tripartite
entanglement

Xk = ak + a†k , (19)

Yk = −i
(
ak − a†k

)
, (20)

with a commutation relationship of [Xk, Yk] = 2i. Thus we know that V (Xk) ≤ 1 could
stand for the squeezed state based on our operator definition. V (A) =

〈
A2〉−⟨A⟩2 indicates

the variance of operator A.
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The output fields are determined by the well-known input-output relations (6). In
particular, the spectral variances and covariances have the general form

SoutXi
(ω) = 1+ 2γcSXi (ω), (21)

SoutXi ,Xj
(ω) = 2γcSXi,Xj (ω), (22)

Y quadratures have the similar expressions.
Multipartite entanglement criteria is given by the van Loock and Furusawa(VLF) [18]. In

our discussion, we consider Fokker-Planck equation in P representation and then analyse the
entanglement condition that van Loock and Furusawa criteria are violated simultaneously.
By using the above quadrature definitions, the tripartite criteria is given by

S(1) = V (Xs − Xi)+ V (Ys + Yi − gpYp) ≥ 4 (23)

S(2) = V (Xp +Xs)+ V (Yp − Ys − giYi) ≥ 4 (24)

S(3) = V (Xp +Xi)+ V (Yp − Yi − gsYs) ≥ 4 (25)

in which gk are arbitrary real parameters that are used to optimize the violation of these
inequalities. Notice that, the frequencies of signal wave and idler wave are almost same
compared with the pump wave, thus we choose to investigate S1 and S2 in our rest analysis.

Our microresonator is a spherical cavity of radius R = 1.5 mm, thickness d = 0.5
mm, filled with lithium niobate medium. The coupling coefficient of our system is g =
2πωs

χ (2)

εs

Vsip
Vs

√
2π!ωp

εpVp
[14], in which ωs = 1.94 × 1014 s−1, ωp = 3.87 × 1014 s−1, Vp ≈

2πR × 2R
√(

2π
υp

)
× R

υ
2/3
p

= 10−6 cm3, and χ (2) = 7 × 10−10cgs, Vsip/Vs = 0.3. Besides

that, loaded Q factors are Qp ≃ 8 × 106, Qs ≃ 1.2 × 107. The wavelength of the pump
beam is λp = 775 nm in the vacuum and wavelength of signal beam is λs = 1548 nm, idler
beam is λi = 1552 nm.

Our coupling coefficient for χ (2) is 0.0136 around, larger about two orders than χ (3)

coupling coefficient [7], which is about 1.09 × 10−4, proving its highly efficiency.

5 Output Fluctuation Spectra

From our above discussion in Eq. [8–16], the stable solution is completely governed by three
parameters: total damping rate γ , coupling coefficient g, and pump wave power ε, which
in turn determine the drift matrix M , the diffusion matrix D, and the intracavity spectral
correlation matrix S.

To begin with, we fixed the pumping power ε, but it’s always the variables outside the
cavity that we observe. Thus the transfer also plays a role in the observation, which is deter-
mined by a ratio γc/γ . We vary the ratio based on the fixed other components to investigate
its influence over tripartite entanglement. In Fig. 2, we plot the minimum of the variances
versus the analysis frequency normalized to γ when γc sets to the portion of 0.09, 0.34, 0.8
and 1 of the total damping rate. Due to fact that signal photon has the similar characteristic
with idler photon, we choose to focus on the S(1) and the S(2). The red dashed one relate
with S(1) while blue solid one stands for S(2).

It’s important to notice from figure that when γc/γ = 0.09, there is no entanglement
between pump photon and signal photon. As we increase the out-coupling coefficients, the
s starts to entangle with p around the center frequency until γc/γ = 0.34. And eventually
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Fig. 2 Four variances versus frequency of pump plots when γc/γ is 0.09, 0.34, 0.8, 1. The pump power is
fixed at 1.2εth

when we set the portion to the γc/γ = 1, the degree of entanglement is the largest com-
pared with other case. As a result, we conclude that the entanglement among output modes
increased as the term γc/γ . And the higher portion the coupling coefficient is, the less con-
sumed entangled pairs are wasted in the internal loss. Therefore, the entanglement would be
better when the cavity has lower intracavity loss and higher extracavity coupling coefficient.
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Fig. 3 The minimum variance as a function of pump power. The external coupling coefficient is fixed at
γc = γ
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Fig. 4 Extracavity variance versus frequency of pump power. The external coupling coefficient is fixed at:
γc = γ

In order to investigate the effect the pump power bringing to the degree of entanglement,
we firstly set the γ0 = 0 which means no intracavity loss in this part of discussion. With
our previous discussion, the variance S(i) as a function of ω/γ is merely determined by
the parameter ε/εth rather than g, γ or ε independently. We plot the minimum variance
throughout the noise power spectrum as a function of the pump power which has been
normalized by εth in Fig. 3. We plot variance versus frequency under different pumping
power in Fig. 4.

It can be inferred from the Fig. 3 that the variance of S(2) would first decrease as the
pump power increasing and then ascend with the pump power while S(1) increase as the
pump power since the beginning. S(2) reaches its minimum value when ε = 1.2εth around.
Considering that S(2) are the short slabs of the whole entanglement model, we conclude that
the 1.2εth is the best pump power in our case.

In Fig. 4 we investigate the relationship between entanglement intensity with pump
power. As we can see from the figure, there exists a threshold and optimum value for the
pump laser: if power is above the threshold, the tripartite entanglement would increase as
the pump power increases at first. However, if the power continually increases over the opti-
mal value, the entanglement intensity would decreases. Thus, these eight figures provide the
insight for how to manipulate the pump power in order to obtain the maximum entanglement
intensity.

6 Conclusions

In conclusion, we propose the theoretical model for the pump-signal-idler entanglement
based on the high Q microresonator filled with χ (2) medium. By solving Fokker-Planck
equation in P representation, we analyse the entanglement case where van Loock and Furusawa
criteria are violated at same time. We analytically relate the threshold of pump power with
cavity parameters and find that the intensity of entanglement is completed influenced by the
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ε
εth

, ω/γ , and γc/γ . The results would offer a new path for the future study for entanglement

over integrated microrresonator filled with χ (2) nonlinear medium.
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