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Abstract We characterize the efficiency of the practical continuous-variable quantum key
distribution (CVQKD) while inserting the heralded noiseless linear amplifier (NLA) before
detectors to increase the secret key rate and the maximum transmission distance in Gaussian
channels. In the heralded NLA-based CVQKD system, the entanglement source is only
placed in the middle while the two participants are unnecessary to trust their source. The
intensities of source noise are sensitive to the tunable NLAwith the parameter g in a suitable
range and can be stabilized to the suitable constant values to eliminate the impact of channel
noise and defeat the potential attacks. Simulation results show that there is a well balance
between the secret key rate and the maximum transmission distance with the tunable NLA.

Keywords Continuous-variable · Quantum key distribution · Noiseless linear amplifier ·
Source in the middle

1 Introduction

Quantum key distribution (QKD) [1–5] can provide an interesting approach for two partic-
ipants, Alice and Bob, to communicate secretly over insecure quantum channels. Different
from the discrete-variable quantum key distribution (DVQKD) [6, 7], the continuous-
variable QKD (CVQKD) [8] offers high detection efficiencies, off-the-shelf lasers for
sources, and hence has a prospect of the high rate secure key distribution.

! Jinjing Shi
sjjgz2009@gmail.com; shijinjing@csu.edu.cn

1 School of Information Science & Engineering, Central South University, Changsha 410083, China

2 State Key Lab of Advanced Optical Communication Systems and Networks, Department
of Electronic Engineering, Shanghai Jiaotong University, Shanghai 200030, China

http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s10773-015-2757-1-x&domain=pdf
mailto:


Int J Theor Phys (2016) 55:1156–1166 1157

Conventionally, the usage of Gaussian resources, operations, and measurements offers a
simple way of analyzing the security of the CVQKD [29–32] protocols. In contrast to Alice
being the source of the entanglement protocol [27], an idea of having Eve being the source
(EBTS) was put forward to keep the high secret-key rate and defend the attack performed
by the eavesdropper, Eve [9]. Namely, Eve was placed in the middle between Alice and Bob
and was given full control of the creation of the Gaussian entangled resource. Using the
previous analytical techniques, a secure key can still be generated between Alice and Bob
[10].

Recently, it has been demonstrated that noiseless linear amplifier (NLA) can be prop-
erly applied in the CVQKD protocol to improve the maximum transmission distance [11].
According to the characteristics of the one-way NLA-based CVQKD [11], it is expected that
the inserted NLA [12–14] can be elegantly applied before detectors to improve the maxi-
mum transmission distance of the CVQKD with the entanglement in the middle (EITM). In
the NLA-EITM-based CVQKD protocol, the parameter of the tunable NLA can be achieved
from balancing between the secret-key rate and the maximal transmission distance with
post-selection approach [15].

In this approach, we focus on the use of the heralded NLA that is inserted before detectors
to dynamically balance between the secret key rate and the maximal transmission distance of
the EITM-based CVQKD protocol, which contributes to better performances defend against
losses or noises and has attracted much attention recently [9]. Compared to other optical
amplifiers, such as the probabilistic NLA which amplifies the amplitude of a coherent state
to achieve the original level of noise [12], the effect on the maximum transmission distance
is apparent because it is the tuned parameter g rather than the success rate of the NLA
has a main influence on it. Furthermore, the effect of a probabilistic NLA on the secret-
key rate may be not obvious as the success rate of the NLA is always lower than 1/g2.
Consequently, it is useful for the practical NLA-EITM-based CVQKD by compensating the
effect of the noises or losses in imperfect quantum channels [16] as they usually play a key
role in increasing the maximum transmission distance of quantum communications.

This paper is structured as follows. In Section 2, the NLA-EITM-based CVQKD protocol
is described for a quantum network, where an entangled Gaussian resource is placed in the
middle between Alice and Bob. Then the equivalent parameters of the NLA-EITM-based
CVQKD protocol is calculated with the post-selection approach. In Section 3, the secret
key rates of the protocols with and without NLA are compared for performance analysis
while balancing the secret key rate and the maximum transmission distance. Finally, the
conclusion is drawn in Section 4.

2 The NLA-EITM-Based CVQKD Protocol

In order to show the effect of the heralded NLA on the EITM-based CVQKD, we suggest
an NLA-EITM-based network system with the tunable NLA being inserted before detectors
using direct reconciliation.

2.1 The EITM-based CVQKD

In the EITM-based CVQKD, an entangled Gaussian resource is placed in the middle
between two participants, i.e., Alice and Bob, as shown in Fig. 1. The entangled source
with variance V (potentially created by the entrusted participant) is placed in the middle
between Alice and Bob, as shown in Fig. 1. Eve’s attack consists of two entangling cloner
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Fig. 1 Schematic of the EITM-based CVQKD protocol

attacks on each side of the source. Without loss of generality, Alice performs heterodyne
detection while Bob performs homodyne detection with direct reconciliation since the cal-
culations for reverse reconciliation can be derived automatically. The source is employed
by Alice and Bob to generate a secure key for encryption [1]. In principle, this source could
be created by the third party, say Charlie, while installing an entangled source between two
participants in a quantum network. However, we can assume that Eve could also create
this entangled state. The entangled source is assumed to be Gaussian due to the fact that
a Gaussian state can maximize the Shannon mutual information and a Gaussian attack can
maximize Eve’s extractable information from an eavesdropping point of view [17, 18]. In
the attack, Eve perfectly replaces quantum channels between Alice and Bob with her own
quantum channels, where the loss is simulated by two separate beam splitters with symmet-
ric transmissions T1 and T2, i.e., T1=T2. Eve’s Einstein-Podolsky-Rosen (EPR) state has two
entangled modes, i.e., Xepr1 (sent to Alice) and Xepr2 (sent to Bob), which is created by
combining two orthogonal squeezed states Xs1 and Xs2 on a 50 : 50 beam splitter given by

Xepr1 = (Xs1 +Xs2)/
√
2, (1)

and

Xepr2 = (Xs1 − Xs2)/
√
2. (2)

Assume V is the symmetrized variance of two entangled modes and Eve’s attack is
perfect, i.e. V := V (Xepr1) = V (Xepr2). It is interesting to note that taking T1 = 1, it
becomes the conventional CVQKD where Alice creates the entangled state safely at her
station. Eve performs a collective Gaussian attack on each of these beam splitters [17–19],
which is the strongest attack according to the principle of quantum physics [20–22]. In
addition, entangling cloner is one of the most commonly used collective Gaussian attack
[23, 24]. This attack consists of Eve preparing (for each of the two beam splitter attacks)
ancilla modesXE andX′′

E from an entangled Gaussian state with varianceW . She keeps one
mode X′′

E and injects another mode XE into the unused port of the beam splitter, leading to
the output mode X′

E . These operations are repeated identically and independently for each
of the signal modes sent out to Alice and Bob. The output modes are stored in a quantum
computer and detected collectively at the end of the protocol with the final measurement
being optimized on the basis of Alice and Bob’s classical communications.

The secret-key rate of the EITM-based CVQKD protocol can be derived for direct
reconciliation as follows

K = rS(A : B) − S(A : E), (3)
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where S(A : B) (or S(A : E)) is the mutual information between Alice and Bob (or
Alice and Eve) and r represents reconciliation efficiency [9]. Alice’s heterodyne detec-
tor and Bob’s homodyne detector are assumed to be perfect and their covariance matrix is
characterized by [25]

γAB =
(
aI cZ

cZ bI

)
, (4)

where I and Z are general Pauli matrices, a = T1V + (1− T1)W1, b = T2V + (1− T2)W2,
and c =

√
T1T2(V 2 − 1) [9]. It forms the basis for most of our analysis, which takes the

situation Eve being in the middle into account. The mutual information between Alice and
Bob for coherent states is given by

S(A : B) = 1
2
log2

(
a + 1

a + 1 − c2/b

)
. (5)

Subsequently, we obtain S(E) = G[(λ1 − 1)/2] +G[(λ2 − 1)/2] [8], where
G(x) = (x + 1) log2(x + 1) − x log2 x, (6)

and the symplectic eigenvalues λ1,2 are calculated as

λ21,2 =
1
2

[
# ±

√
#2 − 4D2

]
, (7)

with # = a2 + b2 − 2c2 and D = ab − c2. To create a coherent state, Alice performs
heterodyne detection on her mode using a 50 : 50 beam splitter (BS), which introduces
vacuum noise denoted by system C. The operation on the initial correlation matrix γA0C0B

can be described by the symplectic transformation γACB = [SBS
AC ⊗ IB ]T γA0C0B [SBS

AC ⊗ IB ]
[2]. Using the purification approach, we have S(E|A) = S(BC|A) since the systemBCE is
pure after Alice’s measurement. The correlation matrix of the system BC which is relevant
to Alice’s measurement is calculated to be

γ
xa
BC =

⎛

⎜⎜⎝

b − c2/(a + 1) 0
√
2c/(a + 1) 0

0 b 0 −c/
√
2√

2c/(a + 1) 0 2a/(a + 1) 0
0 −c/

√
2 0 (a + 1)/2

⎞

⎟⎟⎠ . (8)

After that, the conditional von Neumann entropy can be calculated as S(BC|A) =
G[(λ3 − 1)/2] +G[(λ4 − 1)/2], where

λ23,4 =
1
2

[
A±

√
A2 − 4B

]
, (9)

with A = (a + bD + #)/(a + 1) and B = D(b + D)/(a + 1). Finally, we can calculate
S(E : A) = S(E) − S(E|A), and hence achieve the secret key rate K from (3).

2.2 The Tunable NLA-EITM-Based CVQKD

We assume that Alice, Bob and Eve operate as usually while Alice and Bob insert the tun-
able NLA in their detection stages, as shown in Fig. 2. The entangled source with variance
V is placed between Alice and Bob while Eve implements two entangling cloner attacks on
each side of the source. Alice and Bob select the successful run of amplification after their
detections. Only the events that corresponding to the successful amplifications will be used
for extracting a secret key [11]. Since the output of the tunable NLA remains in the Gaussian
regime, the equivalent parameters of a coherent state sent in a Gaussian noisy channel can



1160 Int J Theor Phys (2016) 55:1156–1166

V

W1 W2

EPR source

Alice BobXE1 XE2

X'E2X'E1

X''E2X''E1

Xepr1 Xepr2

T1 T2

XA XB

Fig. 2 Schematic of the NLA-EITM-based CVQKD protocol with the tunable NLA before detectors

be similarly derived. It is shown that the covariance matrix γAB(λ, T ,W)(λ is the param-
eter of coherent state, T is the transmittance, W is the variance of attack) of the amplified
state is equal to the covariance matrix γAB(ζ, η, N, g = 1), which describes an equivalent
system with a coherent state parameter ζ sent through a channel with transmittance η and
the variance of attack N without using the tunable NLA.

When the input state, i.e., ρ̂th(λch) = (1 − λ2ch)'
∞
n=0λ

2n
ch|n⟩⟨n|(λch is the parameter of

thermal state), is displaced by β = βx + iβy , the output is described as

ρ̂ = D̂(β)ρ̂th(λch)D̂(−β). (10)

This state would be received by Bob if he obtains Alice’s measurement results. It can be
decomposed on an ensemble of coherent states using P function [26]

ρ̂ =
∫

P(α)|α⟩⟨α|dα, (11)

where P(α) = e|α|
2

π2

∫
e|u|

2⟨−u|ρ̂|u⟩eu∗α−uα∗
du [11]. Straightforward calculations show

that

⟨−u − β|ρ̂th(λch)|u − β⟩ = (1 − λ2ch)e
−|u|2(1+λ2ch)−|β|2(1−λ2ch)+(uβ∗−u∗β)(1−λ2ch). (12)

Therefore we achieve P(αx + iαy) = p(αx) ∗ p(αy) with

p(ας ) =
1√
π

√
1 − λ2ch

λ2ch
e
− 1−λ2

ch

λ2
ch

(ας−βς )
2

, (13)

for ς ∈ {x, y}. In the absence of thermal noise, i.e., λch = 0, the expression p(ας ) in (13)
becomes proportional to a Dirac distribution δ(ας − βς ).

The successful amplification can be ideally described by an operator Ĉ = gn̂, where n̂
is the number operator in the Fock basis. The yielded state has to be normalized, but the
norm is not the success probability of the transformation since Ĉ is unbounded. Namely, the
amplification of a coherent state |α⟩ leads to another coherent state proportional to |gα⟩, i.e.,

Ĉ|α⟩ = e
|α|2
2 (g2−1)|gα⟩. (14)

Since Ĉ is linear, the amplification of ρ̂ can be derived directly as follows

ρ̂′ = Ĉρ̂Ĉ =
∫

P(α)e|α|
2(g2−1)|gα⟩⟨gα|dα. (15)
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By introducing the change of variable u = gα, we obtain

ρ̂′ ∝
∫

P(u/g)e
g2−1
g2

|u|2 |u⟩⟨u|du. (16)

As before, it is easy to see that P(u/g) = p(ux/g)p(uy/g). Since |u|2 = |ux |2+ |uy |2,
we consider the scenario

P(ux/g)e
g2−1
g2

u2x = 1√
π

√
1 − λ2ch

λ2ch
e
− 1−λ2

ch

λ2
ch

(
ux
g −βx

)2
+ g2−1

g2
u2x
. (17)

The argument of the exponential can be easily put in the following form [11]

− 1 − λ2ch

λ2ch

(
ux

g
− βx

)2

+ g2 − 1
g2

u2x =

−1 − g2λ2ch

g2λ2ch

(

ux − βxg
1 − λ2ch

1 − g2λ2ch

)2

− β2
x

(1 − g2)(1 − λ2ch)

1 − g2λ2ch
. (18)

Therefore, up to a global unimportant normalization factor independent of the variable
integrated α or u, the expression in (18) corresponds to a thermal state ρ̂th(gλch) displaced

by
g(1−λ2ch)

1−g2λ2ch
β. Then we can conclude that

ρ̂ ∝ D̂(g̃β)ρ̂th(gλch)D̂(−g̃β), (19)

where g̃ = g(1−λ2ch)

1−g2λ2ch
. In order to keep a physical interpretation, we note that the tuned

parameter g must satisfy the constraint gλch < 1 [11].
Let us derive the parameters β and λch corresponding to the entanglement-based protocol

presented in (19). When Alice obtains the results αA for her heterodyne measurement on one
mode of the EPR state |λ⟩, another mode is projected on a coherent state with an amplitude
proportional to λαA. This state is then sent through the quantum channel with transmittance
T , which transforms its amplitude to be proportional to

√
T λαA. Thus the displacement β

can be taken as
β =

√
T λαA. (20)

The variance
1+λ2ch
1−λ2ch

of the thermal state corresponds to Bob’s variance T + (1 − T )W

for VA = 0, i.e.,
1+ λ2ch

1 − λ2ch
= T + (1 − T )W, (21)

and hence

λ2ch = T + (1 − T )W − 1
T + (1 − T )W + 1

. (22)

Finally, the action of the NLA in (19) on a displaced thermal state given by (20) and
(22) induces the transformations as follows

√
T λαA → g

1 − λ2ch

1 − g2λ2ch

√
T λαA, (23)

T + (1 − T )W − 1
T + (1 − T )W + 1

→ g2
T + (1 − T )W − 1
T + (1 − T )W + 1

. (24)
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In what follows, we consider the effect of the tunable NLA when Bob has no idea
about Alice’s measurement result. In such a case, Bob’s state is a thermal state ρ̂B =
(1 − λ∗2)'∞

n=0(λ
∗)2n|n⟩⟨n|, whose variance is given by γAB , i.e.,

1+ λ∗2

1 − λ∗2 = T V + (1 − T )W, (25)

from which we obtain

λ∗2 = T V + (1 − T )W − 1
T V + (1 − T )W + 1

. (26)

Since the tunable NLA always transforms a thermal state with parameter λ∗ into
another thermal state with parameter gλ∗, it shows that the tunable NLA performs the
transformation as follows

T V + (1 − T )W − 1
T V + (1 − T )W + 1

→ g2
T V + (1 − T )W − 1
T V + (1 − T )W + 1

. (27)

According to above-mentioned analysis, the effective parameters ζ , η and N can be
derived from

√
ηζ = g

1 − λ2ch

1 − g2λ2ch

√
T λ, (28)

η + (1 − η)N − 1
η + (1 − η)N + 1

= g2
T + (1 − T )W − 1
T + (1 − T )W + 1

, (29)

and
η 1+ζ 2

1−ζ 2
+ (1 − η)N − 1

η 1+ζ 2

1−ζ 2
+ (1 − η)N + 1

= g2
T 1+λ2

1−λ2
+ (1 − T )W − 1

T 1+λ2

1−λ2
+ (1 − T )W + 1

. (30)

Taking for W = 1, we achieve

ζ = λ

√
1+ (g2 − 1)T , η = g2T

1+ (g2 − 1)T
,N = 1. (31)

It is obvious that the parameters ζ , η, N correspond to the parameters λ, T , W , respec-
tively. In the light of the equivalent parameters with the constraints 0 < ζ < 1, 0 < η < 1
and N ≥ 1, we get the maximum value of the gain gmax given by

gmax(T ,W) =
√√√√−2

√
(W 2−1)(T−1)2

T + 4T
√

(W+1)T
W−1 + ((W + 1)T − W + 1)(W + 1)(T − 1)

((W + 1)T − W + 1)2
. (32)

We obtain the relationship between W and ϵ due to the attacks hidden in the noises, i.e.,
(1 − T )W = 1 − T + T ϵ. The channel loss L will change the channel transmission T to
T = 10−L/10. Then the function of gmax(L, ϵ) is acquired, as shown in Fig. 3. It is helpful
for us to find the optimal parameter g according to the values of L and ϵ. Making use
of these parameters, we can calculate the secret-key rate as a function of the transmission
distance, which will be analyzed in next section.

3 Performance Analysis

The secret-key rate of the non-NLA-EITM-based CVQKD protocol without using the NLA
is given by K(λ, T ,W) in (3). By multiplying the secret-key rate for successful ampli-
fications K(ζ, η, N) with the success probability Pss , the secret-key rate KNLA of the
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Fig. 3 Maximum value of the gain gmax as a function of the losses and noise. Maximum value gmax rises
with the increase of the loss while the noise has a negative effect on the gmax

NLA-EITM-based CVQKD protocol can be derived. For the simple analysis, it can be
assumed that the tunable NLA has a sufficient dynamics to neglect distortions and hence
Pss is constant. This is a reasonable assumption since in that case the optimal value of V is
not infinite for the constraint r < 1. In addition, the precise value of Pss depends on prac-
tical implementations and is not important in this work. It acts only as a scaling factor and
does not change the fact that a zero secret-key rate can become positive with the tunable
NLA. Then we get the secret-key rate given by

KNLA = PssK(ζ, η, N). (33)

The success probability Pss for the tunable NLA with gain g is bounded by 1/g2, which
will be used for the NLA-EITM-based CVQKD protocol.

Using the above-derived parameters, the secret-key rates of the NLA-EITM-based pro-
tocol can be acquired in simulations over a lossy channel. We consider a simple case that
Alice performs heterodyne detection while Bob performs homodyne detection for coher-
ent states. The parameter η can be calculated with the help of λ and g, and the value λ is
selected as small as possible due to the constraint of η. Furthermore, the value λ that satis-
fies the constraint V = 1+λ2

1−λ2
should be taken large enough to achieve the high secret key

rate. Simulations show that this protocol performs well for the given parameters W = 1,
V = 1.13, ϵ = 0.005, and r = 0.95. In addition, we let T = 10−aS/10, where S denotes the
transmission distance and a = 0.2 dB/km is the optical fibre channel loss coefficient.

We illustrate the secret key rates (bit/pulse) of the EITM-based protocol as functions
of transmission distance (km) in Fig. 4. The full line indicates the secret-key rate for the
EITM-based protocol without using the NLA [9], while the dashed and dotted lines indicate
that of the protocol with the inserted NLA for g = 2 and g = 3, respectively. Compared
with the non-NLA-EITM-based protocol, the maximum transmission distance of the NLA-
EITM-based protocol is more than 30 kilometers for g = 2 before the secret key rate
decreases rapidly, as shown in Fig. 4. Furthermore, taking a larger parameter for g = 3,
the maximum transmission distance of the NLA-EITM-based protocol can be increased by
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almost 56 kilometers. It is interesting to note that the secret key rate decreases slowly before
the transmission distance approaches to 70 kilometers. Also, there is a well balance between
the secret key rate and the maximal transmission distance for the parameter g of the tunable
NLA. Namely, the larger value g means the higher secret key rate and the longer maximal
transmission distances as well. Of course, the NLA-EITM-based protocol performs much
better than that of the non-NLA-EITM-based protocol in terms of both the secret key rate
and the maximal transmission distance.

We note that here the above-mentioned results are not the exact secret key rate and maxi-
mal transmission distance of the implemental protocol in practice, but only an illustration of
the effect of the NLA on the EITM-based CVQKD [28]. The reason is that the NLA-added
noise can be manipulated adaptively for the optimization referring to participants’ detec-
tions, which enhance the performance in implementation procedures [10]. Furthermore, the
case of the NLA-EITM-based CVQKD may be similarly done by the receiver (Bob) of
reverse reconciliation to enhance the efficiency of the related CVQKD, which can be ana-
lyzed in a similar way. Therefore, the simulation results are just for the preliminary analysis
and the rigorous analysis of the proposed NLA-EITM-based CVQKD protocol needs to be
further investigated in our future work.

4 Conclusions

A novel NLA-EITM-based CVQKD protocol with the tunable heralded NLA inserting
before each receiving terminal is proposed to to balance between the secret key rate and
the maximal transmission distance. It has been demonstrated that the inserted NLA in
the EITM-based CVQKD protocol can increase the maximum transmission distance by
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20log10g dB of losses, which is compared with the non-NLA-EITM-based CVQKD pro-
tocol. In this protocol, the tunable NLA increases the maximum distance by about 30
kilometers, which is equivalent to 6 dB of losses even for a small gain g = 2. As mentioned
above, two tunable NLAs can be respectively inserted in the NLA-EITM-based CVQKD
protocol which means the increased distance is doubled.
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