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Abstract We show the successful use of a heralded noiseless linear amplifier on the detec-
tion stage in the two-way continuous-variable quantum key distribution to improve the
performance. Due to the excess noise, the secret-key rate of the two-way protocol becomes
negative for a certain distance of transmission. The use of a heralded noiseless linear ampli-
fier increases this distance by the equivalent of 20 log10g dB of losses, and it also helps the
two-way protocol tolerate more excess noise.
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1 Introduction

Quantum key distribution (QKD) [1–5] allows the two legitimate partners to establish
a secret key through an untrusted environment controlled by an eavesdropper. In recent
years, continuous-variable quantum key distribution (CVQKD) has been promoted as an
alternative to discrete-variable quantum key distribution, because CVQKD use the homo-
dyne detection technique, which is widely used in classical optical communication, rather
than dedicated photon-counting technology [6–8]. Generally speaking, CVQKD is usually
demonstrated as the one-way protocol, which means the quantum states are transmitted
through a noisy channel only once, but it is often limited to several tens of kilometers [9]. A
recent experimental demonstration of the one-way protocol succeeds over 80 km of optical
fiber [10].

In contrast to the one-way protocol, an idea of the two-way protocol is put forward
to keep the high secure key rate and defend the attack by the eavesdropper [11, 12].
In the two-way protocol, the two partners, Alice and Bob, have two configurations in
the protocol. The switching between the two configurations is used as a virtual princi-
ple against Eve, which is proved to effectively defend the collective entangling-cloner
attack.

In this paper, we propose to use a heralded noiseless linear amplifier (NLA) [13–24]
before the homodyne detection to improve the performance of the two-way protocol against
losses and noise. Compared to other optical amplifier, a probabilistic NLA can amplify
the amplitude of a coherent state while obtaining the original level of noise [13], and
the correct operation is heralded, since only data from successful amplified states can be
used to error correction to get the information. It has been demonstrated that the NLA
can be applied in the one-way protocol to improve the maximum transmission distance
[22]. It is useful for quantum communication by compensating the effect of losses [23].
Recent research has realized a heralded noiseless amplification of a photon polarization
qubit [24].

The question arises if the NLA can be applied to the two-way protocol to improve the
performance. Here we address this problem, by obtaining the equivalent parameters of the
two-way protocol with the NLA and then transferring the circumstance into that without
the NLA to compute the secret-key rate. We find the NLA can help the two-way protocol
improve the maximum transmission distance and tolerate more excess noise. The security
proofs about inserting the NLA before homodyne detector are similar to those concerning
protocols with postselection.

This paper is organized as follows. In Section 2, we demonstrate the two-way protocol,
and then make comparison with the one-way protocol, which reveals the reason why the
two-way protocol can contribute to prefect the traditional one-way protocol. In Section 3, we
calculate the equivalent parameters with the use of the NLA in the two-way protocol, based
on the main communicational channel of the two-way protocol. In Section 4, we compare
the secret key rate with the NLA and without the NLA in the two-way protocol, then we see
the improvement of maximum transmission distance and endurable excess noise with the
use of the NLA, where we can also see the better performance of the two-way protocol than
the one-way protocol. The conclusion is drawn in Section 5.
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2 Two-way QKD Protocol

2.1 Two-way QKD Protocol

The two-way protocol has been proposed to make some improvements to the traditional
one-way protocol. As depicted in Fig. 1, Bob has an output quadrature B̂1 = 0̂+b1, where a
pure vacuum state with variance V0 = 1 is modulated by Gaussian variable b1 with variance
Vb1 := µ. Then through the insecure channel of the first quantum communication, mode B1
is sent to Alice. After receiving the noisy mode A1, Alice randomly switches between two
configurations [12]:

(i) the ON configuration: Alice encodes a Gaussian variable a with variance Va = µ,
and then sent the output mode A2 with the quadrature Â2 = Â1 + a;

(ii) the OFF configuration: Alice homodynes the incoming modeA1 with classical output
a1. After the detection, Alice sends another thermal state Â2 = 0̂+ a2, with the same
signal variances as Bob, i.e.V0 = 1 and Va2 = µ.

In both cases, Bob receives the mode B2 ,which is the output of the incoming mode A2
back through the second noisy channel in the same circumstance of the first channel. At
the end of the double quantum communication, Alice and Bob use the public channel to
communicate which configuration, ON or OFF, was chosen in the protocol. For the OFF
configuration, Bob directly homodynes the incoming mode B2, resulting in the classical
output b2 ≈ a2 and a1 ≈ b1, which is typical of the one-way QKD system. For the ON
configuration, Bob performs the generic quadrature B̂ = B̂2 − T b1, and then homodynes
the mode B with the output b ≈ a.

Usually, the switching between the ON and OFF configuration is used as a virtual basis
against Eve. If Eve performs the two-mode coherent attack, Alice and Bob use the OFF
configuration to defend the attack,then obtaining a secret key from b2 ≈ a2 and a1 ≈ b1.
On the contrary, if Eve performs the one-mode coherent attack, the ON configuration is

W 

W 
BobAlice

OFF 

OFF 

ON

Hom 

Hom 

Fig. 1 Two-way QKD protocol. Eve uses the two Einstein-Podolsky-Rosen states to preform the collective
entangling-cloner attack
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undoubtedly an effective way to defend the attack to extract a secret key from b2 ≈ a2.
After obtaining a small subset of these variables, Alice and Bob can decide which configu-
ration is useful to defend the attack, and then use the classical error correction and privacy
amplification for their data to extract a secret key in direct or reverse reconciliation. In fact,
the use of two-mode coherent attacks against the two-way protocol is also not advantageous
for Eve. As discussed in Ref.[11], just using the ON configuration, Alice and Bob can reach
security thresholds which are much higher than those of the one-way protocols.

Then let us describe the two-way protocol more precisely. As shown in Fig. 1, a col-
lective entangling-cloner attack of an Einstein-Podolsky-Rosen(EPR) state with variance
W against the two-way protocol consists of Eve performing two independent and identical
beam-splitter attacks (transmission T ), which is known as two-mode coherent attacks. So,
the output mode quadrature A1 can be expressed as:

Â1 =
√
T B̂1 +

√
1 − T Ê1. (1)

After modulation of Alice, we get

Â2 =
√
T B̂1 +

√
1 − T Ê1 + a. (2)

Then through the attack channel, the output mode B2 can be expressed as:

B̂2 = T B̂1 +
√
T a +

√
1 − T (

√
T Ê1 + Ê2). (3)

Subtracting off the input modulation b1 (known to only Bob), we get the processed
quadrature B̂ = B̂2 − T b1 equal to

B̂ = T 0̂+
√
T a +

√
1 − T (

√
T Ê1 + Ê1). (4)

After changing the shape of the (4), we can get

B̂ =
√
T (

√
T 0̂+

√
1 − T Ê1 + a)+

√
1 − T Ê2, (5)

with variance

VB = T (T V0+(1−T )W+Va)+(1−T )W = T (V0+(1−T )(W −V0)+Va)+(1−T )W.

(6)
For an actual channel, the excess noise ϵ can be expressed as

(1 − T )W = 1 − T + T ϵ, (7)

and the V0 represents the vacuum noise 1. Thus, we can get

VB = T (1+ T ϵ + Va)+ 1 − T + T ϵ, (8)

From the (8), we can see it is very similar to the output of the one-way protocol

Vout = T (1+ Va)+ 1 − T + T ϵ, (9)

and further consider that the two-way protocol is an improvement of the one-way protocol
with a real modulate variance :

Vreal = T ϵ + Va = (1 − T )(W − 1)+ Va. (10)

Then the (8) can be transformed into

VB = T (1+ Vreal)+ 1 − T + T ϵ. (11)

Although it makes sacrifice to the percentage of useful modulation variance, yet with the
quadrature B̂ = B̂2−T b1, in which b1 is only known to Bob and then effectively defend the
attacks by Eve, it also largely increases the secret-key rate and decreases the information of
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eavesdropping. The detailed calculation of the secret-key rate of the two-way protocol will
be derived in the next part.

Thus, we can keep in mind that the two-way protocol is an improvement of the one-way
protocol by using the secret knowledge about the states, and this is why a ≈ b in the ON
configuration. Then all the measures to increase the quality of the one-way protocol, such
as adding phase-insensitive amplifier, phase-sensitive amplifier or noiseless linear amplifier
on the Bob’s detection stage [8, 22], can be applied to improve the two-way protocol. First,
it should be noted that while amplifiers can effectively recover classical signals, they only
offer limited advantages when working on quantum signals, as amplification is bound to
preserve the original signal to noise ratio (SNR) . This implies that ordinary linear ampli-
fiers, such as phase insensitive amplifier and phase sensitive amplifier, can only find limited
applications in the context of QKD. On the other hand, a probabilistic NLA can in principle
amplify the amplitude of a coherent state while retaining the initial level of noise. Therefore,
when only considering its successful runs, the NLA can compensate the effect of losses and
therefore have better performance for quantum communication.

2.2 Secret-key Rate in Reverse Reconciliation

Here we study the security performance of the two-way protocol against collective
entangling-cloner attacks of an EPR state with variance W . As discussed in Ref.[11], the
reverse reconciliation(RR) is proved to have the best performance in the two-way proto-
col. Adopting the ON configuration, we derive the analytical expressions of the asymptotic
secret-key rates on the condition of high modulation (µ → +∞) to simplify computation.

In the collective attack, the secret key rate for RR is given by R := I (a : b) − I (E : b)
using the Holevo bound [25]. The mutual information between Alice and Bob is derived
from the differential Shannon entropy [26] and is simply given by

I (a : b) = 1
2
log2

Vb

Vb|a
, (12)

where Vb is the variance of Bob’s post-processed variable b, and Vb|a its variance condi-
tioned to Alice’s encoding variable a. From the (6), where VB = Vb and we set Va = u, we
can know:

Vb = T 2V0 + T µ+ (1 − T 2)W, (13)

which gives Vb → T µ in the limit of high modulation. With the same limit and setting
µ = 0, the conditional variance Vb|a is given by

Vb|a = T 2V0 + (1 − T 2)W, (14)

Thus, the mutual information between Alice and Bob is given by

I (a : b) = 1
2 log2

T 2V0+T µ+(1−T 2)W

T 2V0+(1−T 2)W

→ 1
2 log2

T µ

T 2V0+(1−T 2)W
.

(15)

Then we need to compute the Eve’s Holevo information on Bob’s processed variable:

I (E : b) = S(E) − S(E|b), (16)

where S(E)is the von Neumann entopy of Eve’s multimode output state ρE (modes
E′
1E

′′
1E

′
2E

′′
2 ) and S(E|b) is the entropy of the output state ρE|b conditioned to the Bob’s

variable b. Because these states are Gaussian, their entropies can be computed from the
symplectic spectra of their covariance matrices, VE and VE|b, respectively [1].
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After computation, we get the following expression of the Eve’s covariance matrixes for
the Gaussian state ρE of modes E′

1E
′′
1E

′
2E

′′
2

VE =

⎛

⎜⎜⎝

εI ϕZ χI 0
ϕZ W I θZ 0
χI θZ △(Va, Va) ϕZ
0 0 ϕZ W I

⎞

⎟⎟⎠ , (17)

where 0 :=diag(0, 0), I :=diag(1, 1), Z :=diag(1,−1) and the parameters are defined as

ε := (1 − T )VB1 + TW, (18)

χ = −
√
T (1 − T )(W − VB1), (19)

θ = −(1 − T )(W 2 − 1), (20)

γ = T (1 − T )VB1 + (1 − T + T 2)W, (21)

ϕ =
√
T (W 2 − 1), (22)

△(Va, Va) = γ I+ (1 − T )diag(Va, Va). (23)

As for parameters, we set VB1 = V0 + µ and Va = µ, and we use the limit of
high modulation(µ → ∞) to simplify our computation. Therefore, we can calculate the
asymptotic symplectic spectrum of the covariance matrices, and obtain the four eigenval-
ues ν1 → W, ν2 → W and ν3, ν4 with the relationship ν3ν4 → (1 − T )2µ2. Using these
eigenvalues, we are able to compute the entropy of Eve’s state ρE which is given by [27]:

S(E) =
4∑

k=1

h(νk) → 2h(W)+ log2((
e

2
)2(1 − T )2µ2), (24)

where

h(x) := x + 1
2

log2(
x + 1
2

) − x − 1
2

log2(
x − 1
2

), (25)

and its asymptotic expansion h(x) ≃ log( ex2 ) for large x.
Nowwe consider to compute covariance matricesVE|b. First, we start to derive the global

covariance matrices

VEB =
(
VE D
DT VbI

)
,

where covariance matrices VE given in (17) describe Eve’s modes E′
1E

′′
1E

′
2E

′′
2 , and the

covariance matrices VbI computed in (13) represent Bob’s virtual mode B. After apply-
ing the homodyne detection on mode B, we get the conditional covariance matrices
VE|b = VE − (1/Vb)D)DT , where ) := diag(1, 0, 0, 0). Here the block D describes the
correlations between Eve’s and Bob’s modes, and is given by

DT = (ξ1I.φ1Z, ξ2I,φ2Z), (26)

where
ξ1 = −T

√
1 − T (V0 − W), (27)

φ1 =
√
T (1 − T )(W 2 − 1), (28)

ξ2 = −
√
T (1 − T )(T V0 + Va)+ TW

√
T (1 − T ), (29)

φ2 =
√
(1 − T )(W 2 − 1). (30)

Author's personal copy



Int J Theor Phys (2016) 55:2199–2211 2205

With the same parameters and limits, we can derive asymptotic expression of the
conditional symplectic spectrum ν̃1, ν̃2, ν̃3, ν̃4, which is given by ν̃1 → W ,

ν̃2 →
√
W(1+ T 2V0W + T 3(1 − V0W))

T 2V0 +W + T 3(W − V0)
, (31)

ν̃3ν̃4 →
√
(1 − T )3(T 2V0 +W + T 3(W − V0))µ3

T
. (32)

Using these eigenvalues ,we are able to compute the conditional entropy S(E|b). Thus,
after we calculate I (E : b) = S(E) − S(E|b) and R = I (a : b) − I (E : b), the RR
secret-key rate with asymptotic expression is given by

R(T ,W) = 1
2 log2(

T 2V0+W+T 3(W−V0)
(V0T 2+(1−T 2)W)(1−T )

)

+h(ν̃2) − h(W),
(33)

where V0 = 1 represents the vacuum noise.

3 Equivalent Channel with the NLA in Two-way Protocol

From the last section, we clearly see the two-way protocol is an improvement of the one-way
protocol. Then let us consider the use of the NLA before Bob’s homodyne detection in the
two-way protocol of Fig. 2. Here we also build the system in the Gaussian quantum channel,
in which Eve performs Gaussian attacks. In this modified version of the protocol, Alice and
Bob implement the two-way protocol, but Bob adds a NLA to his stage before his homodyne
detection, which is here assumed to be perfect. Then, only the events corresponding to a
successful amplification will be used to extract a secret key. This scheme is therefore very
similar to protocols with postselection. Besides, Alice adds a NLA before his homodyne
detection in the one-way protocol to keep the symmetry.

W 

W 
BobAlice

OFF 

OFF 

ON

Hom 

Hom 

Fig. 2 Two-way QKD protocol with the NLA. Eve also use the two EPR states to preform the collective
entangling-cloner attack
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Since the two-way protocol is very similar to the one-way and the output of the NLA
remains in the Gaussian regime, we can find equivalent parameters η, ζ and N of a thermal
state sent through the double Gaussian noisy channel to help us keep the same Gaussian
average value and variance, and then compute the secret key. Because the processed quadra-
ture B̂ = B̂2 − T b1 is used to counterpart the Gaussian variable b1 encoded by Bob, we
can calculate the equivalent parameters without the function of both the Gaussian variable
b1 and the processed quadrature, which has no effect on the output of the NLA and helps us
to simplify the computation.

First, the input state ρ̂ before Bob’s homodyne without the NLA is ρ̂th(λch) = (1 −
λ2ch)

∑∞
(n=0) λ

2n
ch|n >< n| displaced by β = βx + iβy , so it becomes

ρ̂ = D̂(β)ρ̂th(λch)D̂(−β). (34)

As discussed in [22], when it passes through the NLA, the state is transformed to:

ρ̂′ ∝ D̂(g̃β)ρ̂th(gλch)D̂(−g̃β), (35)

where g̃ = g
1−λ2ch

1−g2λ2ch
In order to keep a physical interpretation,we note that value of g must

satisfy that gλch < 1.
After Alice’s encoding the Gaussian variable a, the amplitude of modulated thermal state

is proportional to λ with variance V = 1+Vreal . This state is then sent through the quantum
channel of transmittance T , which transforms its amplitude to ∝

√
T λ. The displacement β

can thus be taken as

β =
√
T λ, (36)

Then from the (11), we clearly see the incoming state before the homodyne detector with

the variance T V + (1 − T )W . Then the variance
1+λ2ch
1−λ2ch

of the thermal state corresponds to

Bob’s variance T + (1 − T )W when Vreal = 0, and then we get the expression

1+λ2ch
1−λ2ch

= T + (1 − T )W

⇒ λ2ch = T+(1−T )W−1
T+(1−T )W+1 .

(37)

Next, the action of the NLA on a displaced thermal state given by (35) produces the
transformations:

√
T λαA

NLA−−−→ g
1−λ2ch

1−g2λ2ch

√
T λαA

T+(1−T )W−1
T+(1−T )W+1

NLA−−−→ g2 T+(1−T )W−1
T+(1−T )W+1 .

(38)

The next step is to consider the action of the NLA when Bob does not have any
knowledge on the incoming states. In such a case, his state is a thermal state ρ̂B =
(1 − λ∗2)

∑∞
n=0(λ

∗)2n|n >< n|
1+λ∗2
1−λ∗2 = T V + (1 − T )W

⇒ λ∗2 =
T 1+λ2

1−λ2
+(1−T )W−1

T 1+λ2

1−λ2
+(1−T )W+1

,
(39)

T 1+λ2

1−λ2
+ (1 − T )W − 1

T 1+λ2

1−λ2
+ (1 − T )W + 1

NLA−−−→ g2
T 1+λ2

1−λ2
+ (1 − T )W − 1

T 1+λ2

1−λ2
+ (1 − T )W + 1

. (40)
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Now, there are all the equations required to find the expression of the effective parameter
η, ζ and N . Using (38,40), those parameters can be solved as

√
ηζ = g

1 − λ2ch

1 − g2λ2ch

√
T λ, (41)

η + (1 − η)N − 1
η + (1 − η)N + 1

= g2
T + (1 − T )W − 1
T + (1 − T )W + 1

, (42)

η 1+ζ 2

1−ζ 2
+ (1 − η)N − 1

η 1+ζ 2

1−ζ 2
+ (1 − η)N + 1

= g2
T 1+λ2

1−λ2
+ (1 − T )W − 1

T 1+λ2

1−λ2
+ (1 − T )W + 1

. (43)

The solution can be expressed as below

ζ = λ

√
TWg2+T g2−Wg2−TW+g2−T+W+1
TWg2−T g2−Wg2−TW+g2+T+W+1

, (44)

η = 4T g2

(∇+(T+1)g2+1−T )(∇+(1−T )g2+T+1)
, (45)

where ∇ = ((T − 1)g2 + 1 − T )W ,

N = ((1−T )g4+T−1)W 2−(2g4+2)W+(T+1)g4−T−1
(g2−1)2(T−1)W 2+(2g4−2)W−(1+T )g4+(2T−2)g2−T−1

.
(46)

Then, we must pay attention to the equivalent parameters 0 ≤ ζ < 1, 0 ≤ η ≤ 1, and
N ≥ 1, so we can get:

0 ≤ λ <

⎛

⎝
√
TWg2 + T g2 − Wg2 − TW + g2 − T +W + 1
TWg2 − T g2 − Wg2 − TW + g2 + T +W + 1

⎞

⎠
−1

, (47)

gmax(T ,W) =

√
−2T

√
(W2−1)(T−1)2

T +4T
√

(W+1)T
W−1 +((W+1)T−W+1)(W+1)(T−1)

((W+1)T−W+1)2 . (48)

Then we consider important comments about those equivalent parameters, which con-
firms the validity of their expression.

First of all, we degenerate to the real physical parameters without the NLA, for g = 1,

g = 1 ⇒
ζ = λ, η = T ,N = W.

(49)

Next, when there is no excess noise(W = 1), they match previous result[13]:

W = 1 ⇒
ζ = λ

√
1+ (g2 − 1)T , η = g2T

1+(g2−1)T
, N = 1.

(50)

After validity of the expression, we should pay attention to the equivalent parameters
of the first channel. From (44,45), we can clearly see the equivalent transmittance η and
variance of the attack N . However, we must keep in mind that the equivalent parameters
just focus on the second back channel of information communication, because the actual
function of the first channel is to prepare a vacuum state with additional modulated variance
together with Va to become Vreal . Since the modified Vreal is changed into the much larger
value V ′

real = 1+ζ 2

1−ζ 2
− 1, it doesn’t matter for us to replace the first channel transmittance T

with the equivalent parameter η, the Eve’s attackW with the equivalent parameterN , which
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helps us to build the same channel of the two-way direction. Then, the equivalent V ′
a can be

expressed as:
V ′
a = V ′

real − (1 − η)(N − 1). (51)

Through difficult calculation, we can clearly see the equivalent V ′
a is closer to infinity com-

pared to the original Va , which makes the secret key rate calculation in the Section 2 closer
to the real situation. Then using the equivalent parameters, we can extract the secret-key
rate with the NLA in the two-way protocol from the (33).

4 Increase of the Maximum Transmission Distance

In the Section 2, we get the secret-key rate in the two-way QKD protocol. In the Section 3,
we extract the equivalent parameters with the NLA before the Bob’s homodyne detector.
Then the analysis of the equivalent state allows us to get the secret key rate from the channel
without the NLA. Then, we must pay attention to the successful amplification of the NLA
with the probability of Pss . Since we only care about the maximum distance and endurable
excess noise which just depends on the positivity of the secret key rate, we can assume Pss

is a positive constant with the upper limitation of 1/g2 [22], which keeps the same positivity
with the secret-key rate and does not have an effect on the results. Recent study shows its
success in the one-way protocol in practice [28]. Although the NLA faithfully amplify low-
energy input states and we use the large modulation for simplifying computation, it doesn’t
have the conflict in practice, since we can use the same modulated thermal states both in
the one-way and two-way protocol and it cannot be modulation infinity. Then, we give the
further discussion for the modified two-way protocol. The secret-key rate INLA is given by

INLA = PssI (η, N) = PssI
′(T ,W), (52)

where I ′(T ,W) represents the final secret-key rate with the parameter T and W . Next, we
want to calculate the secret-key rate for an actual channel with transmittance T and excess
noise ϵ, and we can demonstrate the relationship:

(1 − T )W = 1 − T + T ϵ. (53)

Then we calculate the secret-key rate with the use of the NLA in the parameters of T and ϵ.
First, we find that the maximum of noiseless amplifier gmax depends on the value of the

T and ϵ from the (48,53). In Fig. 3, we give the relationship between the gmax and the losses
in dB, on the condition of ϵ = 0.1. Due to the limitation of the gmax , we can’t use a fixed
noiseless amplifier to every value of T . For example, when T = 1, gmax = 1, which means
we can’t use the noiseless amplifier in the no-loss channel. But for the strong loss channel,
the gmax becomes so large, then we can give a constant parameter g of the NLA to help
improve the performance of the two-way protocol.

Because of excess noise, the secret key rate drops to zero for a certain distance. From the
previous results [22], we know in the one-way QKD protocol, the use of the NLA can help
to increase the maximum transmission distance. The equivalent losses for which the secret
key rate is zero are increased by

12 = 20log10 g dB. (54)

Then after we use the equivalent parameters to compute the (33), we find the same increase
of the permitted loss in the two-way, since the two-way protocol is an improvement of the
one-way protocol. In Fig. 4, we compute the secret-key in two-way protocol without the
NLA and with a NLA of g = 2. Then we can clearly see that the secret key rate remains
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Fig. 3 Maximum value of the gain gmax as a function of the losses. we can clearly see gmax rises with the
increase of the loss. In the curve, the excess noise ϵ = 0.1

positive for losses increased by 12 = 6 dB. We also compute the circumstance with g = 3
and g = 4, where the increase on the permitted loss also satisfies the formula.

Another important quality for the two-way protocol with the NLA is to tolerate more
excess noise. Because the probability of success chosen for the NLA don’t change the posi-
tivity of the secret key rate, we can deduce the maximal tolerable excess noise for different
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Fig. 4 Maximized secret key rate as a function of the losses in dB. Due to the probability of success, we can
just keep the information on its positivity. we can clearly find the extended losses of the two-way protocol
with the use of the NLA in the figure. The excess noise ϵ = 0.1
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Fig. 5 Maximal excess noise as a function of the losses in dB. Because the maximal excess noise just depend
on the the positivity of the secret key rate, it isn’t related to specific probability of success of the NLA. From
the figure we see that, the two-way can tolerate more excess noise in the channel than one-way protocol, and
the NLA can help to improve the performance both in one-way and two-way protocol

losses. In Fig. 5, we compute the maximal excess noise in the two-way protocol, without
the NLA and with a NLA of g = 4 and then compare with the one-way protocol in the same
circumstances. We can see the two-way protocol is more robust than the one-way protocol.
And the application of the NLA is helpful to improve the maximal tolerable excess noise
of the two-way protocol as well as one way-protocol. We can also see that, with the same
excess noise, the maximal permitted losses can be extended as 20log10 g dB by using the
NLA.

5 Conclusion

In this paper, we have shown the two-way protocol is an improvement of one-way protocol
based on the confidential knowledge of the quantum states and then propose the use of a
heralded noiseless linear amplifier before the homodyne detector as a way to improve the
performance of the two-way protocol against losses and noise. The secret key rate becomes
negative for a certain distance of transmission due to the excess noise, and we have demon-
strated that a heralded noiseless linear amplifier can increase this distance by the equivalent
of 20log10 g dB of losses as well as its use in the one-way protocol, and it also helps the
two-way protocol tolerate more excess noise. Our computation is based on an equivalent
system with the function of the NLA, which can help us simplify the calculation.
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