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It has been found that non-Gaussian operations can be applied to increase and distill entanglement between
Gaussian entangled states. We propose here a method to improve the performance of entanglement-based (EB)
continuous-variable quantum-key-distribution protocol by using the non-Gaussian operation, in particular, the
subtraction operation, which can be implemented under current technology easily. Security analysis shows that
the subtraction operation can well increase the secure distance and tolerable excess noise of the EB scheme and
also the corresponding prepare-and-measure scheme.
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I. INTRODUCTION

Quantum key distribution (QKD) provides a novel way to
allow two distant parties, the sender Alice and the receiver
Bob, to establish a secret key through unsecure quantum
and classical channels. Different from the discrete-variable
quantum key distribution (DVQKD) [1–3], in continuous-
variable quantum key distribution (CVQKD) [3–8], Alice
usually encodes information in the quadratures of optical field
with Gaussian modulation, and Bob can decode the secret
information with high-efficiency and high-speed homodyne
or heterodyne detection. So CVQKD schemes avoid the use
of a single-photon detector, and have the prospect of high
rate secure key distribution. Moreover, these protocols have
been proved secure against arbitrary collective attacks [9–11],
which are clarified to be coincident with coherent attacks
asymptotically by the quantum De Finetti theorem [12].

Despite the above merits, the secure distance of CVQKD is
too short when comparing to DVQKD. The main reason is that,
for Gaussian modulation, Alice and Bob should construct a key
from shared continuous random values in the reconciliation
procedure with quite low efficiency, especially when the
transmission distance is long. Another reason is that the applied
modulated variance in practice does not run in an optimal
value for long-distance communication because of the limit
precision and efficiency of homodyne detectors. To solve the
main problem, one solution is to design a good reconciliation
code with high efficiency even at low signal-to-noise ratio
(SNR) [13]. Another solution is to apply discrete modulation,
such as the four-state protocol proposed by Leverrier et al. [14].
Since there exists an error correction code with high efficiency
for discrete values even for low SNR, the four-state protocol
can then extremely improve the secure distance. In a sense,
the four-state protocol also corresponds to the continuous
modulation CVQKD protocol with low modulated variance.

However, the unconditional security proof in [14] relies
on a hidden assumption that the quantum channel is linear.
Actually, Alice and Bob cannot estimate the covariance matrix
from their experimental data without the linear channel as-
sumption. Recently, Leverrier et al. modified their protocol by
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introducing decoy states [15] such that the mixed state sent to
Bob is Gaussian. Then Alice can randomly choose a Gaussian
modulation mode which is used for parameter estimation, or
choose a non-Gaussian modulation mode which is used for
key distillation, without discrimination by Eve. Lately, an
improved four-state protocol is proposed [16], where Alice
takes heterodyne detection, and Alice and Bob can evaluate
the covariance matrix directly without the linear channel
assumption. The remaining problem is that the correlation
between Alice and Bob’s quadratures cannot reach that of
an Einstein-Podolsky-Rosen (EPR) pair, which restricts the
secure key rate.

Interestingly, it has been demonstrated theoretically and
experimentally that the non-Gaussian operations, for instance,
the photon subtraction and photon addition operations, can
be used to increase and distill the entanglement in Gaussian
entangled states [17–22], and thus to improve the performance
of quantum teleportation [22] and quantum linear amplifiers
[23]. In this paper, we propose a method to improve the
performance of entanglement-based (EB) CVQKD protocol
by using non-Gaussian operation, i.e., the subtraction opera-
tion. We show that the subtraction operation, which can be
easily implemented under current technology, can increase
the entanglement degree of the two-mode state, and thus
improve the correlation between Alice and Bob’s quadratures.
The security analysis demonstrates that this method allows
distribution of secret keys over much longer secure distances
with much better performance to resist excess noise contact to
the original Gaussian modulation schemes.

This paper is organized as follows. In Sec. II, we first intro-
duce the EB CVQKD protocol, then introduce the model of the
proposed method by using non-Gaussian operation. In Sec. III,
we briefly review the logarithmic negativity as computable
entanglement measures, and then analyze the evolution of
the logarithmic negativity under the subtraction operation. We
calculate the secret key rate in detail under general collective
attack and show the performance of the renewed protocol in
Sec. IV. Finally, conclusions are drawn in Sec. V.

II. GAUSSIAN MODULATION EB CVQKD
WITH NON-GAUSSIAN OPERATION

Before introducing the method to improve the performance
of CVQKD under study, we first briefly review the Gaussian
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FIG. 1. (Color online) The Gaussian modulation EB CVQKD
protocol with non-Gaussian operations. PNRD stands for photon
number resolving detector.

modulation EB CVQKD protocol as shown in Fig. 1 (the
module within the red dashed line excluded).

Alice prepares a two-mode squeezed vacuum (EPR) state
ρAB with variance V = VA + 1, where the modulation vari-
ance VA = 2α2, and takes heterodyne measurement of one half
of state ρAB . Then, the other half of state ρAB is sent to Bob
through the quantum channel characterized by transmission
efficiency T and excess noise ε. After receiving the state, Bob
takes homodyne detection and informs Alice which observable
he obtained. Finally, Alice and Bob will share two correlated
Gaussian variables which can be further used to exact a private
binary key.

Bob’s inefficient detection is modeled by a beam splitter
(BS) with transmission η, while its electronic noise νel is
modeled by an EPR state of variance νd , with one half entering
the other input port of the BS. Since the quantum channel and
Bob’s detection are not the ideal apparatus, the channel-added
noise referred to channel input and detection-added noise re-
ferred to Bob’s input are expressed in shot noise units as χline =
1/T − 1 + ε and χh = [(1 − η) + νel]/η, respectively. νd is
related to the detection-added noise χh as νd = ηχh/(1 − η).

As shown in Fig. 1, the EPR state |�〉AB is generated by
using two single-mode squeezed vacuum states |r〉 and |−r〉
with

|r〉k = Ŝk(r)|0〉, (1)

where Ŝk(r) is the squeezing operator on mode k with the form

Ŝk(r) = exp

[
− r

2

(
â
†2
k − â2

k

)]
, (2)

and r is the squeezing parameter. The two modes are combined
with a balanced BS to generate the two-mode squeezed vacuum
(EPR) state |�AB〉 in the form

|�〉AB = ÛAB

(
π

4

)
|r〉A| − r〉B =

∞∑
n=0

αn|n〉A|n〉B, (3)

where

ÛAB(θ ) = exp[θ (â†
AâB − âAâ

†
B)] (4)

is the beam splitter operator, and parameter θ is related to the
transmission efficiency ζ with the function ζ = 1/(1 + tan2 θ ).
So θ = π/4 corresponds to the balanced beam splitter. As
known, the EPR state can be also generated by using a two-
mode squeezing operator. Actually, the combination of two
single-squeezed vacuum states through a balanced BS acts as

a two-mode squeezing operator on two vacuum states,

|�〉AB = ŜAB(−r)|0〉A|0〉B =
∞∑

n=0

αn|n〉A|n〉B, (5)

with ŜAB(r) = exp[−r(â†
Aâ

†
B − âAâB)]. The Schmidt coeffi-

cients are given by

αn =
√

α2n

(1 + α2)n+1
, (6)

where α = sinh r .
Now we consider the protocol when non-Gaussian opera-

tion, i.e., photon subtraction, is introduced. As shown by the
module within the red dashed line in Fig. 1, the combination
of a BS and a photon number resolving detector works as a
practical photon substraction operator. The beam in mode B

is tapped off by a BS with transmission μ, which results in the
state

|�〉AB1C = [IA ⊗ ÛBC0 (θ )]|�〉AB |0〉C0

=
∑

n

αn

n∑
k=0

ξnk|n〉A|n − k〉B1 |k〉C, (7)

where

ξnk = (−1)k
√(

n

k

)
μ(n−k)/2(1 − μ)k/2, (8)

with ( n

k ) the binomial coefficient.
When k photons are detected in the beam on mode C by an

ideal photon number resolving detector, the conditional state
is given by

|�(k)〉AB1 =
∞∑

n=k

αnξnk|n〉A|n − k〉B1 = C〈k|�〉AB1C. (9)

It can be seen |�(k)〉AB1 is still a pure state. For k = 1,

|�(1)〉AB1 =
∞∑

n=1

c(1)
n |n〉A|n − 1〉B1

= 1√
P (1)

∞∑
n=1

αnξn1|n〉A|n − 1〉B1 , (10)

where P (1) = α2(1 − μ)/(1 + α2 − α2μ)2 is the normaliza-
tion factor which denotes the probability of detecting one
photon in mode C. The bipartite state |�(1)〉AB1 in Eq. (10)
is not Gaussian anymore. In the following, we will explore the
performance of the renewed CVQKD scheme with photon sub-
traction, and we will first consider the change of entanglement
of the EPR state.

III. ENTANGLEMENT EVOLUTION UNDER
ONE-PHOTON SUBTRACTION OPERATION

Intuitionally, the entanglement degree of bipartite source
states of the EB CVQKD scheme quantifies the correlation
between the two subsystems, which is positively related to the
performance of the scheme. Essentially, the performance and
even the security of the CVQKD system is restricted by all of
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the imperfections of practical modules in the CVQKD system,
which deteriorate the correlation of the distributed states. It
can been seen from Fig. 1 that the introduction of subtraction
operation changes the EPR source in the original EB CVQKD
scheme. So in order to explore whether the introduction
of photon subtraction can improve the performance of the
CVQKD scheme, we should first analyze the entanglement of
the renewed EPR source.

Now we consider the entanglement evolution of the bipar-
tite state |�〉AB under non-Gaussian operation. Here we apply
logarithmic negativity [24] as entanglement measures, which
as known is an upper bound on the distillable entanglement.
These measures, which are based on the Peres criterion [25],
are defined in terms of the eigenvalues of the partially
transposed density operator. Numerically, the logarithmic
negativity is easy to compute with linear algebra packages.
Consider a bipartite pure entangled state

|φ〉AB =
∑
ij

χij |i〉A|j 〉B, (11)

where |i〉A and |j 〉B are bases in two Hilbert spaces HA and
HB , respectively. We can easily find

‖[|φ〉AB〈φ|]PT‖ =
( ∑

i,j

χij

)2

, (12)

where ρPT is the partial transpose of ρ with respect to either
subsystem, and ‖ · ‖ denotes the trace norm. The logarithmic
negativity can then be obtained as [24]

E(|φ〉AB) = 2 log2

∣∣∣∣∣
∑
i,j

χij

∣∣∣∣∣. (13)

Thus, we can calculate the logarithmic negativities of the EPR
state |�〉AB and |�(1)〉AB1 as

E(|�〉AB) = − log2(1 + α2) − 2 log2(
√

1 + α2 − α), (14)

E(|�(1)〉AB1 ) = 2 log2

(
K · PolyLog

[
− 1

2
,

α
√

μ√
1 + α2

])
,

(15)

where the polylogarithm PolyLog[k,z] is the function
PolyLog[k,z] ≡ ∑∞

n=1
zn

nk , and K = 1+α2(1−μ)

α
√

μ(1+α2)
. Figure 2 de-

picts the comparison of the entanglement of Gaussian state
|�〉AB and the photon subtracted non-Gaussian state |�(1)〉AB1

in the measure of logarithmic negativity.
As can be seen in Fig. 2, the photon subtracted non-

Gaussian state always has a larger amount of entanglement
than the input Gaussian two-mode squeezed vacuum state,
and the gap extends with μ. In this sense, the non-Gaussian
operations have improved the correlation between the two
modes of bipartite states. It should be mentioned that the
photon number resolving detector can be used instead of
the on-off type detector [18], which will lead to a photon
subtracted non-Gaussian mixed state. In the following, we
will show whether the increase of entanglement will improve
the performance of CVQKD.
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FIG. 2. (Color online) Comparison of the logarithmic negativity
for state |�〉AB [dashed (red) curve] and |� (1)〉AB1 for the non-
Gaussian operations [solid (blue) curve] as the function of α with
μ = 0.5.

IV. SECRET KEY RATE OF CVQKD WITH PHOTON
SUBTRACTION OPERATION

Now we consider the performance of the renewed CVQKD
protocol with non-Gaussian operations. For simplicity, we
consider the secret key rate and tolerable channel excess
noise for collective attack when Bob performs homodyne
detection and reverse reconciliation. Because the schemes
with reverse reconciliation admit longer security distance,
we can deduce the performance for heterodyne detection
with the same method. As clarified above, the total noise
referred to the channel input can then be expressed as χthom =
χline + χhom/T . As known, for the Gaussian CVQKD scheme,
the raw key rate can be calculated as

KG = βIG
AB − χG

BE, (16)

where β is the reconciliation efficiency, IG
AB is the Shannon

mutual information between Alice and Bob, and χG
BE is the

Holevo bound [26], which defines the maximum information
available to Eve on Bob’s key, with the form

χG
BE = S(ρE) −

∑
mB

p(mB)S
(
ρ

mB

E

)
= S(ρAB2 ) − S

(
ρ

mB

AHG

)
=

2∑
i=1

G

(
λi − 1

2

)
−

5∑
i=3

G

(
λi − 1

2

)
, (17)

where G(x) = (x + 1) log2(x + 1) − x log2 x, λ1,2 are the
symplectic eigenvalues of the covariance matrix of state ρAB2 ,
and λ3,4,5 are the symplectic eigenvalues of the covariance
matrix characterizing the state ρ

mB

AHG after Bob’s measurement.
It should be noted that we use the fact that system Eve could
purify the Alice-Bob system so we can get S(ρE) = S(ρAB2 )
and S(ρmB

E ) = S(ρmB

AHG). When using homodyne detection, the
mutual information I hom

AB can be derived from Bob’s measured
variance VB3 and the conditional variance VB3|A as

I hom
AB = 1

2
log2

VB3

VB3|A
. (18)

For simplicity, the secret key rate we considered here is
the asymptotic rate, since the improvement for asymptotic
rate will indicate the same exhibition for nonasymptotic rate.
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Thus, to calculate Eve’s information χG
BE , we should derive the

covariance matrix �G
AB of the bipartite state ρAB = |�〉AB〈�|,

since the quantity of χG
BE is always upper bounded by the

function of the covariance matrix of the bipartite state shared
by Alice and Bob [9].

Also, the covariance matrix �N
AB1

of the state ρAB1 =
|�(1)〉AB1〈�(1)| in the EB scheme of the protocol can be
calculated in the following form:

�N
AB1

=
(

X12 Zσz

Zσz Y12

)
, (19)

where

X = AB1〈�(1)|1 + 2â†â|�(1)〉AB1 = 2V ′ + 1, (20)

Y = AB1〈�(1)|1 + 2b̂†b̂|�(1)〉AB1 = 2V ′ − 1, (21)

and

Z = AB1〈�(1)|âb̂ + â†b̂†|�(1)〉AB1 = 2
√

V ′2 − 1. (22)

In addition, 12 is the 2 × 2 identity matrix, σz = diag(1,−1),
â and b̂ are the photon subtraction operators on the two modes
A and B1, and V ′ = 1+α2(1+μ)

1+α2(1−μ) . It can be seen that subtraction
operation does not exist for μ = 1, which corresponds to the
original scheme V ′ = V . However, we cannot use the above
method directly to obtain the secret key rate KN for the non-
Gaussian states. According to the Gaussian optimality theorem
[9,10], the most powerful attack by Eve is the Gaussian attack.
Suppose there exists a Gaussian state ρ ′

AB1
with the covariance

matrix �G
AB1

= �N
AB1

. In the following, we take analysis of the
scheme by using the Gaussian state ρ ′

AB1
instead of ρ ′

AB1
. Thus

we can apply the above method to obtain a lower bound of the
secret key rate for non-Gaussian states as

K̃N = P (1)
(
βIG

AB − χG
BE

)
, (23)

where P (1) is the probability of successful implementation of
photon subtraction.

After the quantum channel, the covariance matrix of ρ ′
AB2

will be dependent on the quantum channel, which has the
following form:

�G
AB2

=
(

X12

√
T Zσz√

T Zσz T (Y + χline)12

)
. (24)

Thus, Bob’s measured variance VB3 = ηT (X + χthom) and
the conditional variance VB3|A = ηT (1 + χthom), the mutual
information between Alice and Bob is given by

I hom
AB = 1

2
log2

X + χthom

1 + χthom
. (25)

Also, we can obtain the symplectic eigenvalues λ1,2 � 1 of the
covariance matrix �G

AB2
as

λ2
1,2 = 1

2 [A ± √
A2 − 4B], (26)

where

A = (1 + 2V ′)2 − 4T (V ′2 − 1) + T 2(2V ′ + χline − 1)2,

B = T 2(2V ′χline + χline + 3)2, (27)

and

λ2
3,4 = 1

2 [C ± √
C2 − 4D], λ5 = 1, (28)
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FIG. 3. (Color online) Asymptotic secret key rate K̃N of the EB
scheme with photon subtraction (thin curves), and KG of the original
scheme (thick curves) as a function of distance for different values of
the excess noise: the solid (red), dashed (purple), dotted (blue), and
dot-dashed (green) curves correspond to ε = 0.01, 0.02, 0.03, and
0.05, respectively.

where

C = Aχhom + X
√

B + T [Y + χline − 4χhom(V ′2 − 1)]

T (Y + χthom)
,

(29)

D =
√

B(X + √
Bχhom)

T (Y + χthom)
.

Supposing modulation variance VA = 0.7, the reverse
reconciliation efficiency is β = 80%, quantum efficiency of
Bob’s detection is η = 0.526, electronic noise νel = 0.043 61,
and μ = 0.5, the lower bound on the secret key rates of the EB
CVQKD protocol with non-Gaussian operation are displayed
in Fig. 3 (the four curves for the renewed scheme are very
close for different values of channel excess noise). It can be
seen that for all different channel excess noise, the renewed EB
scheme admits longer secure distance communication than the
original EB protocol. And interestingly, the curves denoting
the secret key rates of the renewed scheme just have a tiny
change in different values of channel excess noise, which
shows the renewed scheme is very insensitive to the channel
excess noise. So when the excess noise of the quantum channel
becomes larger, the improvement of secure distance is more
obvious. Thus, we can conclude the photon subtraction can
well increase the secure distance and improve the tolerable
excess noise. We will show below the improvement of tolerable
excess noise in detail.

From simulation data, we can fit the distributions of a lower
bound of tolerable channel excess noise of the renewed scheme
and the exact bound of the tolerable channel excess noise of the
original scheme as the function of transmission efficiency in
Fig. 4. It is shown that the photon subtraction operator can quite
improve the tolerable channel excess noise. Interestingly, the
distribution of tolerable channel excess noise is not monotone
anymore because of the change of the covariance matrix.
Generally, the tolerable channel excess noise decreases in
higher channel transmission efficiency, and it is less than 0.15
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FIG. 4. (Color online) Lower bound of tolerable channel excess
noise for the EB scheme with photon subtraction [upper (red)
curve], and the original scheme [lower (blue) curve] as a function
of transmission efficiency.

for T � 0.3. So the secret key rate may decrease to negative
in the area 0–50 km as shown in Fig. 5, when channel excess
noise increases to 0.15.

To confirm the relationship between the performance of
the renewed protocol and the efficiency of photon subtraction
operation, we display the secret key rate K̃N as the function of
parameter μ, which affects the efficiency of photon subtraction
operation, in Fig. 6. It can be seen there always exists an
optimal μ to maximize the secret key rate K̃N , whether
the channel transmission efficiency or excess noise changes.
Moreover, the communication will be insecure when μ is too
small, and the minimal value of μ to keep secure CVQKD
increases with channel excess noise. This coincides with the
fact that almost all the beams sent to Bob are intercepted when
μ is too small, which leads to low SNR. So the tolerable
channel excess noise decreases with μ.

The modulation VA is an important parameter for the
CVQKD scheme, which is quite related to the secret key
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FIG. 5. (Color online) Asymptotic secret key rate K̃N of the EB
scheme with photon subtraction as a function of distance for high
channel excess noise. From top to bottom, ε = 0.1, 0.12, 0.14, 0.15.
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FIG. 6. (Color online) Asymptotic secret key rate K̃N as a
function of μ for different values of the channel excess noise
(solid curves) with given transmission efficiency T = 0.268, and for
different distance (dashed curves) with given channel excess noise
ε = 0.01. From top to bottom, ε = 0.01, 0.02, 0.03, and 0.05, and
distance d = 20, 50, 100, and 150 km.

rate. In order to extract the optimal secret key rate K̃N at a
given distance, we depict the secret key rate as a function of
modulation variance VA in Fig. 7. For the original scheme,
the optional areas of VA are gradually compressed with
the increase of distance, while these areas for the proposed
scheme are open. In this way, the proposed scheme can have
a more flexible application. It can be seen from the figure
that, the optimal value of VA decreases with distance for
the original scheme, but it increases for the scheme with a
photon subtraction operator. Furthermore, since the increase
of modulation variance will improve the SNR, the renewed
scheme can increase modulation variance to improve the
performance. So we can conclude that the introduction of
photon subtraction can well improve the application flexibility
of the CVQKD scheme. It should be emphasized that we
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FIG. 7. (Color online) Asymptotic secret key rate K̃N of the EB
scheme with photon subtraction (solid curves), and KG of the original
scheme (dashed curves) as a function of modulation variance VA with
μ = 0.5, ε = 0.01. From bottom to top, d = 20, 50, 100, and 150 km.
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calculate the secret key rate in consideration of the probability
of successful implementation of photon subtraction. If the
implementation of the non-Gaussian operators is designed
to be deterministic, the improvement of performance will be
considerably large.

As known, the original EB scheme is equivalent to the
prepare-and-measure (P&M) scheme with coherent state
source, since the symmetric measurement of XA and PA by
Alice projects the beam (XB,PB) onto coherent states [27].
According to the virtual entanglement proposed in [27], the
renewed EB scheme with photon subtraction can also be
equivalent to a P&M scheme with a photon subtraction setting
after Alice’s modulation. If we generalize the transmission
efficiency of the BS in the heterodyne detection of Alice’s
station in Fig. 1 as τ , the conditional variance VXB1 |XA

(VPB1 |PA
),

which quantifies the remaining uncertainty on XB1 (PB1 ) after
the measurement of mode A giving the estimate XA (PA) of
XB1 (PB1 ), is given by

VXB1 |XA
= 〈

X2
B1

〉 − 〈XB1XA〉〈
X2

A

〉 = 2V ′(1 − τ ) + 4τ − 1

2V ′τ + 1
N0,

(30)

VPB1 |PA
= 〈

P 2
B1

〉 − 〈PB1PA〉〈
P 2

A

〉 = 2V ′τ − 4τ + 3

2V ′(1 − τ ) + 1
N0, (31)

where N0 is the shot-noise variance. If τ = 0.5, Alice performs
heterodyne detection; one has VXB1 |XA

= VPB1 |PA
= N0, i.e.,

the measurement of mode A also projects the beam (XB1 ,PB1 )
onto coherent states. This is also coincident with the fact
that the coherent state is the eigenstate of photon subtraction
operation. So the corresponding P&M scheme of the renewed
protocol is also based on coherent states, but with more robust
performance because of the improvement of the correlation

between the legitimate parties derived from the non-Gaussian
operation. Therefore, we may conclude that the performance
of the P&M scheme of CVQKD based on coherent states can
also be improved by using subtraction operations.

V. CONCLUSION

We have proposed a method to improve the performance
of the EB CVQKD scheme with non-Gaussian operation, in
particular, the photon subtraction operation. The proposed
photon subtraction operation can be easily implemented under
current technology. Since the states to be modulated are
non-Gaussian, we calculate the lower bound on the secret
key rate and tolerable channel excess noise against general
collective attack with the assistance of the Gaussian optimality
theorem. The results show that the proposed protocol allows
much longer secure distances than the original protocol,
and has much better performance in resisting the channel
excess noise. Moreover, the proposed scheme has a more
flexible application, since the areas for practicable modula-
tion variance VA can be open. Furthermore, we show the
subtraction operation may also work in the equivalent P&M
scheme. In summary, we have demonstrated that the photon
subtraction not only can be used to improve the entanglement
degree of the quantum states, but also the performance
of CVQKD, including the longer secure distance, larger
tolerable excess noise, and more flexible choice of modulation
variance.

ACKNOWLEDGMENT

This work was supported by the National Natural Science
Foundation of China (Grants No. 61170228, No. 60970109,
and No. 61102053).

[1] C. H. Bennett and G. Brassard, Proceedings of IEEE Interna-
tional Conference Computers, System and Signal Processing
(IEEE, New York, 1984), pp. 175–179.

[2] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod.
Phys. 74, 145 (2002).

[3] V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek,
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