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Abstract A quantum encryption protocol based on Gaussian-modulated continuous variable EPR correlations is
proposed. The security is guaranteed by continuous variable EPR entanglement correlations produced by nondegenerate
optical parametric amplifier (NOPA). For general beam splitter eavesdropping strategy, the mutual information I(α, ε)
between Alice and Eve is calculated by employing Shannon information theory. Finally the security analysis is presented.
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Quantum cryptography[1] provides secret communi-
cation, where the security is guaranteed by the law of
quantum mechanics.[2−4] Most of quantum cryptography
schemes are about key distribution.[5−11] These schemes
are nondeterministic, thus can only distribute random
key instead of transmitting useful message. Recently sev-
eral novel deterministic communication schemes based on
discrete variable (DV) entanglement states[12,13] or the
nonorthogonal states[14] are proposed, which can trans-
mit useful message, but both the discrete variable entan-
glement and single quanta are neither generated nor de-
tected easily. The continuous variable (CV) can be more
easily generated and manipulated than DV, and the chan-
nel capacity of CV communication can be enhanced. Thus
designing the CV quantum direct communication is a very
interesting problem. In this region, Reid provided a means

to distribute a discrete predetermined key[15] based on CV
entanglements produced by NOPA, but the binary mod-
ulation on CV limits its efficient.

In this paper, we propose a quantum encryption pro-
tocol based on Gaussian-modulated CV EPR correlations,
which can quasi securely transmit the useful message by
the shared keys obtained by quantum key distribution.
By adding the key-controlled noise into useful message,
the information obtained by the eavesdropper (Eve), i.e.,
I(α, ε) is close to 0. In addition, the channel capacity
of the protocol is much higher than that of DV protocol.
We firstly present the protocol in details. For the general
beam splitter eavesdropping strategy, the mutual infor-
mation between Alice and Eve i.e., I(α, ε), is calculated
by employing Shannon information theory. Finally, the
method for detecting Eve is given.

Fig. 1 Schematic representation of quantum encryption protocol based on Gaussian-modulated continuous variable
EPR correlations. NOPA: nondegenerate optical parametric amplifier, LA: linear amplifier, BS: beam splitter, D(α):
displacement operator, S(ξ): two mode squeezing operator of NOPA, G: the gain of LA, η: the transmittance parameter
of BS.
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The protocol is depicted as in Fig. 1. Alice firstly
modulates â1 and â2 by applying displacement opera-
tors D̂ (α = x + ix) and D̂ (β = y + iy) respec-
tively, where x is useful message that will be transmit-
ted, X ∼ N(0,Σ2). Here we have used Z ∼ N(µ, σ2)
to denote that the random variable Z follows Gaussian
probability distribution with the average value µ and the
variance σ2. y is a shared key obtained by key distribu-
tion process, e.g. quantum key distribution, Y ∼ N(0, σ2).
The modes â3 = D̂†(α)â1D̂(α) = â1 + α and â4 =
D̂†(β)â2D̂(β) = â2 + β are two input modes of NOPA,
where D̂(α) = exp(αâ† − α∗â) is the displacement oper-
ator. The output modes of NOPA are â5 = Ŝ†(ξ)â3Ŝ(ξ)
and â6 = Ŝ†(ξ)â4Ŝ(ξ), where Ŝ(ξ) = exp[κt(â†3â

†
4− â3â4)]

is two-mode squeezed operator. As the squeezed param-
eter r = ξ = κt increases, â5 becomes increasingly corre-
lated with â6. Alice calculates the entanglement param-
eter F between â5 and â6, and measures either X or P

of â6 during some time slots, and writes down both the
measurement results and the corresponding time slots for
detecting Eve after finishing transmission. â5 is sent to
Bob. Bob applies D[−β∗ sinh(r)] to â8, (â8 is â5 with-
out the presence of Eve), then he measures either X or P

of â10. After finishing transmission, Alice tells Bob both
her measurement results and the corresponding time slots
through the classical public channel. Bob estimates Fcal

by comparing Alice’s measurement results with his own
during the corresponding time slots. If Fcal > F , Eve ex-
ists, while if Fcal = F , Eve does not exist. Let us give an
explicit algorithm for the protocol. The useful plain text is
divided into blocks with each block consisting of l useful
messages, and m random authentication codes are ran-
domly inserted into a block to form a transmittable block
with the length being l + m. The protocol is introduced
step by step.

(p.1) Alice divides plaintext into n blocks with the
length of each block being l.

(p.2) p = 0.
(p.3) Alice transmits the p-th block B(p) =

{α(p)
0 , . . . , α

(p)
r , . . . , α

(p)
l+m−1}, where α

(p)
r = x

(p)
r + ix(p)

r ,
0 ≤ r ≤ l + m− 1, X ∼ N(0,Σ2), l numbers are the use-
ful messages in the p-th block, the additional m random
authentication codes are inserted randomly for detecting
Eve.

(p.4) The key block K = {β0, . . . , βs, . . . , βl+m−1}
shared by Alice and Bob serves as the encryption-
decryption key in quantum encryption protocol.

(p.5) r = 0, s = 0.
(p.6) Alice modulates â1 and â2 by applying D(α(p)

r )
and D(βs) respectively, and obtains â3 and â4.

(p.7) â3 and â4 interact with each other in NOPA,
and the EPR entanglement beams â5 (travel beam) and
â6 (home beam) are prepared by Alice.

(p.8) Alice sends â5 to Bob. Alice measures either X

or P of â6 of m authentication codes, thus she obtains m

measurement results, then she records these m measure-
ment results and the corresponding time slots.

(p.9) Bob applies D[−β∗s sinh(r)] on â8, where â8 is â5

without the presence of Eve.
(p.10) Bob measures either X or P of â10, recording

both the measurement result and the corresponding time
slot.

(p.11) r = r + 1, s = s + 1.
(p.12) If r < l + m, go to (p.6), otherwise go on.
(p.13) Alice calculates F according to the parameters

r, Σ2, and σ2, and tells Bob the value of F through the
classical channel.

(p.14) Alice tells Bob both her m measurement results
and the corresponding time slots.

(p.15) Bob compares Alice’s measurement results with
his own during the corresponding time slots, calculating
Fcal.

(p.16) If F = Fcal, go on to (p.17), otherwise Alice and
Bob share new key block K = {β0, . . . , βs, . . . , βl+m−1} by
quantum key distribution, then go to (p.3).

(p.17) p = p + 1.
(p.18) If p < n go to (p.3), otherwise go on.
(p.19) End.
In quantum encryption protocol, what we concern is

the mutual information I(α, ε) between Alice and Bob,
i.e. Alice’s information obtained by Eve. In this paper,
we only discuss the general beam splitter attack strategy.
We firstly determine the probability distribution of X and
P in all modes as depicted in Fig. 1, then calculate I(α, ε)
according to Shannon information theory.

Applying the displacement operator D (α = x + ix)
and D (β = y + iy) on â1 and â2 respectively, the modes
â3 and â4 are given by the following equations,

X3 = X1 + X , P3 = P1 + X ,

X4 = X2 + Y , P4 = P2 + Y . (1)

â3 and â4 are two input modes of NOPA, while two output
modes are given by the following equations,[16]

X5 = X3 cosh(r) + X4 sinh(r) ,

P5 = P3 cosh(r)− P4 sinh(r) ,

X6 = X4 cosh(r) + X3 sinh(r) ,

P6 = P4 cosh(r)− P3 sinh(r) , (2)

where â5 and â6 are entangle beams. As the squeezed pa-
rameter r increases, EPR correlation between â5 and â6

becomes increasingly prefect, and

F = 〈(∆(X5 − k1X6))2〉min〈(∆(P5 + k2P6))2〉min (3)

is close to 0, where k1 and k2 are parameters that can
be modified to give the minimum variances of δX =
X5 − k1X6 and δP = P5 + k2P6, respectively. When
F < 1/16, the EPR correlation is obtained.[16]
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The input modes and the output modes of beam split-
ter have the following relation: â8 =

√
ηâ5 +

√
1− ηâ7,

â9 =
√

ηâ7 −
√

1− ηâ5. The following equations are sat-
isfied,

X̂8 =
√

ηX̂5 +
√

1− ηX̂7 ,

P̂8 =
√

ηP̂5 +
√

1− ηP̂7 ,

X̂9 =
√

ηX̂7 −
√

1− ηX̂5 ,

P̂9 =
√

ηP̂7 −
√

1− ηP̂5 . (4)

Applying D(−β∗ sinh(r)) on â8, Bob obtains â10,

X10 = X8 − sinh(r)Y , P10 = P8 + sinh(r)Y . (5)

Using Eqs. (1) ∼ (4), we can easily calculate the expres-
sions of X9 and P9,

X9 =
√

ηX7 −
√

1− η[(X1 + X) cosh(r)

+ (X2 + Y ) sinh(r)] ,

P9 =
√

ηP7 −
√

1− η[(P1 + X) cosh(r)

− (P2 + Y ) sinh(r)] . (6)

The expressions of X10 and P10 are given by the following
equations,

X10 =
√

η[(X1 + X) cosh(r) + (X2 + Y ) sinh(r)]

+
√

1− ηX7 − sinh(r)Y ,

P10 =
√

η[(P1 + X) cosh(r)− (P2 + Y ) sinh(r)]

+
√

1− ηP7 + sinh(r)Y , (7)

where all random variables follow Gaussian distribution,

X ∼ N(0,Σ2) , Y ∼ N(0, σ2) , Xi ,

Pi ∼ N
(
0,

1
4

)
, (8)

i = 1, 2, 7, i.e. all input states are the vacuum states. Ac-
cording to Eqs. (6) and (8), we can easily calculate the
variances of X9 and P9,

〈(∆X9)2〉 = (1− η)cosh2(r)Σ2 + (1− η)

×
[1
4

cosh2(r) +
1
4

sinh2(r) + sinh2(r)σ2
]

+
1
4
η ,

〈(∆P9)2〉 = (1− η)cosh2(r)Σ2 + (1− η)

×
[1
4

cosh2(r) +
1
4

sinh2(r) + sinh2(r)σ2
]

+
1
4
η . (9)

Equations (9) show that no matter whether Eve measures
X9 or P9, the variance of signal distribution is always

M = (1− η)cosh2(r)Σ2 , (10)

the variance of noise is

N = (1− η)
[1
4

cosh2(r) +
1
4

sinh2(r) + sinh2(r)σ2
]

+
1
4
η . (11)

The signal-noise-ratio between Alice and Eve is

γαε =
M

N
. (12)

According to Shannon information theory,[17] the
channel capacity of the additive white Gaussian noise
(AWGN) channel is

I =
1
2

log2(1 + γ) , (13)

where γ = Σ2/σ2 is the signal-noise ratio, Σ2 and σ2 are
the variances of the signal and noise probability distri-
butions, respectively. If the signal follows the Gaussian
distribution, and the channel is AWGN channel, then the
channel capacity is the mutual information of the commu-
nication parties.

According to Eq. (13), the mutual information between
Alice and Eve is

Iαε =
1
2

log2(1 + γαε) . (14)

In quantum encryption process, what we concern is the
mutual information I(α, ε), i.e., how much information
Eve eavesdrops from the Alice’s useful message. For ex-
ample, when r = 2, Σ = 10, σ = 30, I(α, ε) = 0.08 bits.
I(α, ε) will quickly decrease when σ increases while other
parameters keep invariant. Thus, the parameter r and σ

can be properly selected to achieve the security level de-
manded by the consumer. For example, the security level
I(α, ε) = 8.5 × 10−6 bits can be obtained when the pa-
rameters are selected as r = 2, Σ = 10, σ = 3000. As we
can see, Alice and Bob implement secure quantum com-
munication by intentionally adding the random noise, i.e.,
the useful message X hides in the big random noise Y .
Bob can remove the intendedly-added random noise while
Eve cannot. From the above discussion, we can see that
quantum encryption process is quasi-secure.

Next, we will present a method for detecting Eve. Eve
inevitably disturbs the probability distribution of travel
beam â5 if he wants to obtain Alice’s information, thus
must destroy the entanglement relation between â5 and
â6. After finishing communication, Alice and Bob can
detect Eve by comparing the original F with the later cal-
culated Fcal. Now, we give the explicit detecting process.

We firstly construct two random variables

δXEve = X8 − k1X6 , δPEve = P8 + k2P6 . (15)

If Eve does not exist, i.e., â8 = â5, then equation (15)
becomes

δXno-Eve = X5 − k1X6 , δPno-Eve = P5 + k2P6 . (16)

According to Eqs. (1), (2), and (8), we can easily calculate
the variances of δXno-Eve and δPno-Eve,

〈(∆(δXno-Eve))2〉 = [cosh(r)− k1 sinh(r)]2
(
Σ2 +

1
4

)
+ [sinh(r)− k1 cosh(r)]2

(
σ2 +

1
4

)
,
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〈(∆(δPno-Eve))2〉 = [cosh(r)− k2 sinh(r)]2
(
Σ2 +

1
4

)
+ [sinh(r)− k2 cosh(r)]2

×
(
σ2 +

1
4

)
, (17)

where we assume that two input states of NOPA are vac-
uum states.

When
k1 = k2 =

R

S
, (18)

where

R = 2 sinh(r) cosh(r)(1 + 2Σ2 + 2σ2) ,

S = sinh2(r) + cosh2(r) + 4 sinh2(r)Σ2

+ 4 cosh2(r)σ2 , (19)

〈(∆(δXno-Eve))2〉 and 〈(∆(δPno-Eve))2〉 reach the minimal
values,

〈(∆(δXno-Eve))2〉min = 〈(∆(δPno-Eve))2〉min =
W

Z
, (20)

where

W = 4Σ2 + 16Σ2σ2 + 4σ2 + 1 ,

Z = 8 cosh2(r) + 16 cosh2(r)(Σ2 + σ2)

− 16Σ2 − 4 . (21)

Alice can calculate

F = 〈(∆(δXno-Eve))2〉min〈(∆(δPno-Eve))2〉min , (22)

when Σ2, σ2, and r are specified.
When Eve does exist, Bob calculates δXEve and δPEve

according to Eqs. (1), (2), (4), and (15),

δXEve = [
√

η cosh(r)− k1 sinh(r)](X1 + X)

+ [
√

η sinh(r)− k1 cosh(r)](X2 + Y )

+
√

1− ηX7 ,

δPEve = [
√

η cosh(r)− k2 sinh(r)](P1 + X)

+ [k2 cosh(r)−√
η sinh(r)](P2 + Y )

+
√

1− ηP7 . (23)

The variances of δXEve and δPEve can be obtained accord-
ing to Eqs. (8) and (23),

〈(∆(δXEve))2〉 = [
√

η cosh(r)− k1 sinh(r)]2
(1

4
+ Σ2

)
+ [

√
η sinh(r)− k1 cosh(r)]2

(1
4

+ σ2
)

+
1
4
(1− η) ,

〈(∆(δPEve))2〉 = [
√

η cosh(r)− k2 sinh(r)]2
(1

4
+ Σ2

)
+ [

√
η sinh(r)− k2 cosh(r)]2

(1
4

+ σ2
)

+
1
4
(1− η) . (24)

Substituting Eq. (18) into Eqs. (24), then Bob can obtain

Fcal = 〈(∆(δXEve))2〉〈(∆(δPEve))2〉 . (25)

Thus after finishing communication, Bob can estimate
Fcal according to both the statistics he accumulates and
what Alice tells him. If Fcal = F , Eve does not exist.
If Fcal > F , Eve exists. As we can see, Alice and Bob
can detect whether Eve exists or not by the entanglement
parameter F .

In conclusion, a quantum encryption protocol based
on Gaussian-modulated continuous variable EPR entan-
glement correlations is proposed. By adding the key-
controlled noise into the signal, Alice and Bob can im-
plement the quasi secure direct communication, the se-
curity level can be obtained by adding the proper noise.
The beam splitter attack strategy is analyzed in details
by employing Shannon information theory. The entan-
glement parameter F serves as the method of detecting
Eve.
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