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Abstract
The amount of coherent quantum information that can be reliably transmitted down the
memory Pauli channels with Markovian correlated noise is investigated. Two methods for
evaluating the quantum capacity of the memory Pauli channels are proposed to try to trace the
memory effect on the transmissions of quantum information. We show that the evaluation of
quantum capacity can be reduced to the calculation of the initial memory state of each
successive transmission. Furthermore, we derive quantum capacities of the memory phase flip
channel, bit flip channel and bit-phase flip channel. Also, a lower bound of the quantum
capacity of the memory depolarizing channel is obtained. An increase of the degree of
memory of the channels has a positive effect on the increase of their quantum capacities.

PACS numbers: 03.67.Hk, 05.40.Ca, 89.70.Kn

(Some figures in this article are in colour only in the electronic version.)

1. Introduction

Unlike the classical channels, quantum channels have several
distinct capacities, among which the quantum capacity of
quantum channels, i.e. the amount of coherent quantum
information that can be reliably transmitted per channel
use, is one of the peculiar characteristics of quantum
channels [1]. Significant attention has so far been paid to
determining the exact quantum capacities of the memoryless
quantum channels [1–8], i.e. channels in which the noise
acts independently on each channel use. However, only the
quantum capacities of some very special memoryless quantum
channels are known, such as the amplitude-damping [6],
phase flip [7] and erasure [8] channels, and most others are
not known. So, there are several amendatory capacities that
are defined [1, 4] to evaluate the upper and lower bounds of
those quantum capacities.

In fact, the assumption of having the noise acting on
successive channel uses independently is unrealistic, since
correlations between errors in real-world applications of
noisy quantum channel are common. Recently, a great
deal of achievements [9–15] have been made regarding
the classical and quantum capacities of memory quantum
channels, i.e. the ones with correlated noise. In particular,

quantum capacities of the so-called forgetful channels, for
which the memory effects decay exponentially with time,
have been studied [10, 14, 16], and coding theorems for
their quantum capacities have been proved [14]. In classical
information theory, one type of memory channel with known
capacity is the one with Markovian correlated noise. Bowen
and Mancini [9] extended this classical memory channel
to quantum information theory and considered the quantum
channel with Markovian correlated noise, where such a
correlated noise quantum channel is modeled with the use
of unitary operations between the transmitted states, an
environment state and a memory state with a finite dimension.

We evaluate the amount of coherent quantum information
that can be reliably transmitted down the Pauli quantum
channels with memory, and trace the memory effect
acting on the quantum information transmission. The
correlations between the errors are considered temporally
over the successive channel uses. In fact, they can also
be considered spatially between the uses of the parallel
channels equivalently for a consideration of computation of
the capacity. We find it is possible to evaluate the quantum
capacities of the Pauli channels by using the model including a
memory state. It should be remarked that the dimension of the
channel memory state is determined by the number of Kraus
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operators in the single channel expansion and the correlation
length of the channel. In particular, we derive the quantum
capacities of the memory phase flip channel, bit flip channel
and bit-phase flip channel and also obtain a lower bound of the
quantum capacity of the depolarizing channel with memory.
Moreover, we explore the effects of the memory caused by
the Markovian correlated noise on these capacities.

This paper is organized as follows. In section 2, we give
a detailed introduction to the quantity we are investigating,
namely the quantum capacity, and then a brief introduction
to the forgetful channels. In section 3, we construct the
finite-memory channel with Markovian corrected noise, and
explore the quantum capacity of the memory Pauli channels
based on this model. In particular, we consider some special
Pauli channels with memory, including the memory phase
flip channel, bit flip channel, bit-phase flip channel and
depolarizing channels. Finally, our conclusions are presented
in section 4.

2. Quantum capacity of quantum channels

Quantum communication channels that can be physically
pictured as transmissions of quantum systems from the sender
to the receiver can be used to transfer classical or quantum
information. For transmission of classical information, the
classical bits are firstly encoded in quantum states, which
are then transmitted via a quantum channel. For the case of
quantum information, unknown quantum states are directly
encoded and transmitted between the communicators. One
of the fundamental tasks in quantum information theory is
to derive the capacity of a quantum channel for transmitting
the classical or quantum information, i.e. the maximum
classical or quantum information that a quantum channel can
transmit per channel use with vanishing errors. Specifically,
the quantum capacity can be quantified as the maximum
Hilbert space of states that the quantum channel can transmit
asymptotically and faithfully.

Mathematically, a quantum channel is represented by a
completely positive, trace-preserving (CPTP) linear map N ,
which maps from B(H1) to B(H2), where B(H) denotes the
set of bounded linear operators on the space H and H1 and
H2 are the input and output Hilbert space. According to the
Stinespring dilation theorem [17], a quantum channel (or the
CPTP map)N can be always described by an isometric map U
from the input Hilbert space A to the combined Hilbert space
of the output B and the environment Hilbert space E , followed
by a partial trace over E . It can be explicitly represented in the
form

N (ρ) = TrEUρU †, (1)

where U satisfies U †U = IA. Also, due to the Kraus
representation theorem [18], any quantum channel with input
space A and output space B can be expressed as

N (ρ) =

∑
k

Akρ A†
k, (2)

where Ak are linear maps from A to B with
∑

k A†
k AK = IB .

The natural complementary channel [19–21] Ñ can then be
defined by taking the partial trace over B so that

Ñ (ρ) = TrBUρU †. (3)

Thus, the coherent information [22] of a quantum channel
N with a reference state ρ can be expressed as

IC(ρ,N ) = S(N (ρ)) − S(Ñ (ρ)), (4)

where S(ρ) = −Tr ρ log ρ is the von Neumann entropy. The
quantum capacity of the memoryless channel N is given by

Q(N ) = lim
n→∞

1

n
I C(N⊗n), (5)

where I C(N ) = maxρ I C(ρ,N ), and N⊗n denotes n uses of
a quantum channel. When a channel satisfies the additivity
condition IC(N⊗n) = nI C(N ), the quantum capacity can be
simplified to a ‘single-letter’ formula Q(N ) = I C(N ). Most
classes of the quantum channels cannot satisfy the additivity
condition except the degradable channels shown in [19].

3. Finite-memory quantum channel

The unitary interaction expression for a quantum channel
introduced above provides an intuitive understanding of the
open quantum systems, besides providing a method for
calculating the quantum capacity. For memoryless channels,
the transmitted information and noise sources are treated as
independent random variables, whereas for real-world noisy
quantum channels, this independence should be removed
since the correlations between the errors are common.
Actually, the noise correlations are sometimes necessary for
certain quantum communication [23]. This corresponds to
a physical example of memory quantum channels. We will
introduce a model with finite-memory state proposed in [9]
for the class of correlated noise channels. Then we explore
the amount of coherent quantum information for the quantum
channels with correlated noise effects.

3.1. Construction of the finite-memory channel

We first consider the memoryless channel with input state
given by ρA =

∑
i λiρi . A quantum channel is described as

a CPTP linear map, which may be represented as a unitary
operation on the enlarged input vector space including the
initial input state ρ and a known environment state, which is
initially in a pure state ρE = |0〉E 〈0|. The output state of the
single use of channel is given by

N (ρA) = TrE

[
UAE (ρA ⊗ ρE )U †

AE

]
. (6)

When a sequence of quantum states is transmitted then

N (ρn
A) = TrE

[
UAn En · · · UA1 E1(ρ

n
A ⊗ ρn

E )U †
A1 E1

· · · U †
An En

]
,

(7)
where the state ρn

A denotes n input states for the n
uses of quantum channel, which may be entangled,
and ρn

E = |φE 〉〈φE | is the environment state with
|φE 〉 = |0E1〉 · · · |0En 〉. The trace over the environment
means over all the environment states. The output can be
expressed also from the Kraus decomposition as

N (ρn
A) =

∑
j1··· jn

(A jn ⊗ · · · ⊗ A j1)ρ
n
A

(
A†

j1
⊗ · · · ⊗ A†

jn

)
. (8)

For the memory channels, one model is constructed that
the transmitted states going through the channel act with

2
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a unitary interaction on the same channel memory state
but independent environment states. Therefore, this memory
channel model includes a memory state and n independent
environment states for n uses of channels. We obtain

N (ρn
A) = TrM E

[
UAn M En · · · UA1 M E1(ρ

n
A ⊗ |M〉〈M | ⊗ ρn

E )

× U †
A1 M E1

· · · U †
An M En

]
. (9)

The quantum channel of which the unitary UAi M E i can
be factorized into UAi E i UM or UAi MUE i corresponds to a
memoryless channel or a perfect memory channel, since the
memory or the environment is traced out. Now the Kraus
decomposition is given by

N (ρn
A) = TrM

∑
j1··· jn

(A jn M · · · A j1 M)(ρn
A ⊗ |M〉〈M |)

×

(
A†

j1 M · · · A†
jn M

)
. (10)

It should be mentioned that the unitary operation in
equation (10) may not be factorized as a product of operators
like in the form of equation (8). Since there is the same qubit
memory state for n uses of quantum channel, the transmission
of the quantum channel will affect the output of the next
transmission, which corresponds to the memory effect of
this channel. Actually, the application of the same channel
memory state makes the n uses of the quantum channel
correlated.

3.2. The forgetful memory channel

It is known that equation (5) gives only an upper bound for
a generic memory channel. Only in some cases has it been
proved that it is the true quantum capacity, for example for a
forgetful channel [10, 14, 16]. Forgetful channels are defined
in [14], in which the environment is modeled in two parts:
the memoryless one and the one inducing memory effects.
A direct feature of forgetful channels is that the memory
effects decrease exponentially with time. So in some cases,
with permitted error, the forgetful channel can be mapped
into a memoryless one. This can be clarified by the
double-blocking strategy [10, 14] as shown in the following.
Considering blocks of N + L uses of the channel N , we
actually code and decode for the first N uses and ignore
the remaining L idle uses. The output can be expressed as
NN+L(ρ) when it acts on the state ρ on the spaceH⊗N . When
considering the M uses of such blocks, the corresponding
output of NM(N+L) can be approximated to (NN+L)⊗M(ρ).
This property can be explained as follows [10, 14]:

‖NM(N+L)(ρ) − (NN+L)⊗M(ρ)‖1 6 k(M − 1)cL , (11)

where c < 1, ‖X‖1 = Tr(
√

X† X) is the trace norm and
k is a constant only depending on the memory model.
Equation (11) states that the error induced by the replacement
of the corresponding memoryless channel decays to zero
exponentially fast with the number L of idle uses in a
single block. The intuitional explanation may be that the
correlations among different blocks dies out during the idle

uses. Also, equation (11) is a sufficient condition to prove
coding theorems for forgetful quantum memory channels.
Thus, the system satisfying inequality (11) can be seen as a
forgetful channel in the following.

3.3. Quantum capacity of memory Pauli channels

For n uses of a Pauli channel, a general situation can be
represented by Kraus operators in the following form:

A j1··· jn =
√

p j1··· jn σ j1 · · · σ jn , (12)

where
∑

j1··· jn
p j1··· jn = 1 and σ j1 · · · σ jn is a sequence of

unitary operators with σ0 = I , and σ1, σ2, σ3 correspond to
the Pauli matrices. For the memoryless channel, p j1··· jn =

p j1 p j2 · · · p jn .
We consider the class of memory channels with

Markovian correlated noise, that is, p jn | jn−1 jn−2··· j k = p jn | jn−1

for all k < n. Thus, p j1··· jn can be reduced as

p j1··· jn = p j1 p j2| j1 · · · p jn | jn−1 , (13)

where p jn | jn−1 is the conditional probability that the operator
σ jn is applied to the nth qubit given that the operator
σ jn−1 was applied to the (n − 1)th qubit. We assume that
p jn | jn−1 = (1 − µ)p jn + µδ jn , jn−1 , where µ is the correlation
parameter corresponding to the memory effects of the
quantum channel. This means that with probability µ the same
operator is applied to both of the qubits, while with probability
1 − µ the two operators are uncorrelated. According to
equation (10), the output of n uses of the memory Pauli
channel with Markovian correlated noise is given by

N (ρn
A) =

∑
j1··· jn

p jn | jn−1 p jn−1| jn−2 · · · p j2| j1 p j1(σ jn ⊗ · · · ⊗ σ j1)

× ρn
A(σ

†
i1

⊗ . . . ⊗ σ
†
jn
), (14)

where the set σ j k are the identity matrix and the Pauli
matrices for the single use of the channel on the kth qubit for
jk = 0, 1, 2, 3. Also, the unitary operator in equation (9) can
be expressed as

UAi M Ei |φ
(i)
A 〉| jM 〉|0Ei 〉 =

∑
k

√
pk| jσ

(i)
k |φ

(i)
A 〉|kM 〉| jEi 〉, (15)

where |φ(i)
〉 is the input state and | jM 〉 is the initial memory

state. We consider general input message state ρn
A and

general memory input state ρM =
∑

j1l1
γ j1l1 | j1〉〈l1|M with∑

j1
γ j1 j1 = 1, in which the value γ j1 j1 is determined by the

value of the probability vector of the channel error operators
P = (p0, p1, . . . , pm). The maximum amount of coherent
quantum information for n uses of the quantum channel is
given by

I C(N ) = max
ρn

A

[
S

(
ρB

M

)
− S

(
ρE

M

)]
, (16)

where

ρB
M =N (ρn

A) =

∑
j1

γ j1 j1

∑
j2··· jn+1

p jn+1| jn · · · p j2| j1

×

(
σ

(n)
jn+1

⊗ · · · ⊗ σ
(1)
j2

)
× ρn

A

(
σ

(1)†
j2

⊗ · · · ⊗ σ
(n)†
jn+1

)
(17)

3
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and

ρE
M = Ñ (ρn

A) =

∑
j1

γ j1 j1

∑
j2··· jn+1

p jn+1| jn · · · p j2| j1ρE , (18)

with ρE = | j (n)
n 〉 ⊗ · · ·⊗ | j (1)

1 〉〈 j (1)
1 | ⊗ · · ·⊗ 〈 j (n)

n |E . The
operator σ

(i)
j k

denotes the action on the i th qubit for

jk = 0, 1, 2, 3, and | j (i)
k 〉E is the i th environment state of the

whole environment by n uses of the quantum channel.
It can be seen that the output of the n uses of the

channel in equation (17) is consistent with the one in
equation (14). This verifies the equivalence of the two
representations of the memory quantum channel. We can
conclude from the above computation that the outputs of
the channel and the complementary channel are only related
with the diagonal elements of the input memory state, that
is, ρeff

M =
∑

j1
γ j1 j1 | j1〉〈 j1|M . By using the strong convexity of

trace norm and Kolmogorov distance [10], we can directly
prove that the condition in equation (11) is fulfilled for this
finite-memory model by equation (14), and we obtain

‖NM(N+L)(ρ) − (NN+L)⊗M(ρ)‖1 6 MµL+1. (19)

Thus, the finite-memory model for Pauli channels is
forgetful and the computation from equation (5) gives the
true quantum capacity. According to the subadditive property
of von Neumann entropy, the quantum capacity of this class
of memory Pauli channels with Markovian correlated noise
is additive. Since the value of the quantum capacity is only
positive related to S(ρn

A) when the initial memory state has
predetermined, it achieves the maximum when the n input
product states S(ρn

A) are the product state of n maximally
mixed states of ρA =

∑d−1
i=0

1
d |i〉〈i |A, where d is the dimension

of the channel.

3.4. Special Pauli channels

In this subsection, we explore the quantum capacity of
some special Pauli channels with Markovian correlated noise
based on the above computation, and calculate the quantum
capacity in another way, so as to try to trace the evolution
of the memory effect on transmissions. Firstly, consider the
phase flip channel with Markovian correlated noise, and the
output state of n uses of the channel can be derived directly
from equation (14), where the set σ j k is defined as σ0 = I ,
σ1 = σz and p0 = 1 − p, p1 = p for jk = 0, 1, respectively.
The maximal coherent quantum information for transmitting
n qubits can be easily calculated from equation (16) as

IC(Nz) = n − H(p) − (n − 1)[(1 − p)H(p0|0) + pH(p1|1)],

(20)

where p0|0 = (1 − µ)(1 − p) + µ, p1|1 = (1 − µ)p + µ, and
H(p) = −plog2 p − (1 − p)log2(1 − p) is binary Shannon
entropy. Also, the coherent quantum information of
transmission of n qubits quantum information can be
seen as n times of the coherent quantum information of a
single transmission of one qubit information because of the
additivity of the von Neumann entropy for product input
states. For the first transmission of one qubit, the output

density operator of the memory phase flip channel is given by

N (1)
z (ρA) =

∑
j1

γ j1 j1

∑
j2

p j2| j1σ j2ρAσ
†
j2

= γ00

(
p0|0σ0ρAσ

†
0 + p1|0σ1ρAσ

†
1

)
+ γ11

(
p0|1σ0ρAσ

†
0 + p1|1σ1ρAσ

†
1

)
, (21)

where p1|0 = 1 − p0|0, p0|1 = 1 − p1|1, and γ00 = 1 − p,

γ11 = p are the squares of the amplitudes for the initial
memory state determined by the values of the initial
probability vector of the channel error operators. Similarly,
the output density operator of the complementary memory
phase flip channel can be derived as

Ñ (1)
z (ρA) =

∑
j1

γ j1 j1

∑
j2

p j2| j1 | j1〉〈 j1|E

= γ00|0〉〈0|E + γ11|1〉〈1|E . (22)

Therefore, when the input message state is the
maximally mixed state with the form ρA =

1
2 (|0〉〈0| + |1〉〈1|),

the coherent quantum information of the memory phase
flip channel for transmitting the first qubit achieves its
maximum as

I (1)
C (Nz) = S(N (1)

z (ρA)) − S(Ñ (1)
z (ρA)) = 1 − H(p), (23)

which is directly related with the value p corresponding
to the squares of the amplitudes of the initial memory
state. Now we consider the second transmission of the
qubit. It can be seen that the maximization of the coherent
quantum information only refers to the input message
state, which is independent of the output of the comple-
mentary channel. So, we can also choose the maximally
mixed state as the input message state to evaluate the
quantum capacity. According to equation (15), the initial
memory state for the second transmission is changed to
ρ0

M = p0|0|0〉〈0|M + p1|0|1〉〈1|M with the probability 1 − p
and ρ1

M = p0|1|0〉〈0|M + p1|1|1〉〈1|M with probability p.
Thus, we obtain N (2)

z (ρA) =
∑

j2
γ 0

j2 j2

∑
j3

p j3| j2σ j3ρAσ
†
j3

,

Ñ (2)
z (ρA)=

∑
j2
γ 0

j2 j2

∑
j3

p j3| j2 | j2〉〈 j2|E with probability 1 − p,

and also can obtain N (2)
z (ρA) =

∑
j2

γ 1
j2 j2

∑
j3

p j3| j2σ j3ρAσ
†
j3

,

Ñ (2)
z (ρA) =

∑
j2

γ 1
j2 j2

∑
j3

p j3| j2 | j2〉〈 j2|E with probability

p, where γ
j

i i = pi | j . It follows that the maximal coherent
quantum information of the memory phase flip channel for
transmitting the second qubit takes the form

I (2)
C (Nz) = 1 − (1 − p)H(p0|0) − pH(p1|1). (24)

After the second transmission, the memory state remains
unchanged because the probability to be the state ρ0

M is
(1 − p)p0|0 + pp0|1 = 1 − p, and the probability to stay ρ1

M
is (1 − p)p1|0 + pp1|1 = p. Also, the memory state will also
remain unchanged for the rest of the transmissions. Therefore,
the maximum value of coherent quantum information for each
transmission of the rest of n − 2 qubits is I (i)

C (Nz) = I (2)
C (Nz)

4
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μ

∞

Figure 1. Quantum capacity QM as a function of the degree of
memory of the channel for p = 0.8.

for 36 i 6 n. Now we obtain

n∑
i=1

I (i)
C (Nz) = n − H(p) − (n − 1)[(1 − p)H(p0|0)

+ pH(p1|1)], (25)

which is consistent with the result in equation (20). The
quantum capacity can be derived in the form

QM(Nz) = lim
n→∞

1

n
{n − H(p) − (n − 1)[(1 − p)H(p0|0)

+ pH(p1|1)]}. (26)

This expression is the same as the outcome proposed in [10],
in which the memory phase flip channel is modeled as a
Markov chain. In our computation model, the introduction
of memory state makes the calculation of quantum capacity
more explicit and we can deduce the concrete output
density operator after each transmission. It can be seen that
computation of the initial memory states is the key point
to obtain the quantum capacities. When the operator set
in equation (14) or (21) is defined as σ0 = I , σ1 = σx or
σ0 = I , σ1 = σy for jk = 0, 1, the description of the model
changes to the bit flip channel or bit-phase flip channel. From
equation (16) or equations (21) and (22), we can directly
derive the quantum capacities of these two memory Pauli
channels as

QM(Nx ) = QM(Ny) = QM(Nz) = QM . (27)

In particular, while µ = 0, the memory channels become
memoryless, and the quantum capacities of the memory
phase flip, bit flip and bit-phase flip all become QM = 1 −

H(p), and the quantum capacity QM = 1 for µ = 1, which
means that the perfect memory channels are asymptotically
noiseless. The relationship between the quantum capacity QM

and the degree of memory of the channel is plotted in figure 1
while n = 2, 10, 100, ∞. It shows that the quantum capacity
increases with increasing degree of memory of the channel.
In the following, we consider the depolarizing channel with
Markovian correlated noise.

For a depolarizing channel, the set of Kraus operators
σ j k in equation (13) are defined as σ00 = I, σ01 = σx , σ10 =

σy, σ11 = σz, with corresponding probability p00 = 1 − p,

p01 =
p
3 , p10 =

p
3 , p11 =

p
3 for jk = 00, 01, 10, 11, respect-

ively. However, for the two-dimensional depolarizing
channel, one qubit effective input memory state
ρeff

M =
∑

j1
γ j1 j1 | j1〉〈 j1|M cannot match the description

of the unitary of the memory channel in equation (15), since
the dimension of the input memory state should be at least
larger than the number of Kraus operators for a single use
of the channel. Thus, we expand the memory state to four
dimensions with two qubits to match the four Kraus operators
σ j k , but without changing the dimension of the environment.
We can rewrite equation (15) as

UAi M Ei |φ
(i)
A 〉| jM 〉|0Ei 〉 =

∑
k

√
pk| jσ

(i)
k |kM 〉| j ′

Ei
〉, (28)

where j ′
= j mod 2. The coherent quantum information of

this memory depolarizing channel can be derived also from
equation (16) with the maximally mixed state as the input
state. Since have expanded the dimension of the memory,
inevitably the amount of information transmitted to the
environment is added according to equation (18). Thus, what
we calculate from the above model stated in equation (28) is
a lower bound of the quantum capacity of the depolarizing
channel with Markovian correlated noise. This lower bound
can be derived directly from equations (5) and (16). Here we
consider the second way, that is, to calculate the coherent
quantum information for each transmission of one qubit for
n qubits of quantum information. For the first transmission,
the effective initial memory state is now given by

ρeff
M =

∑
j1

γ j1 j1 | j1〉〈 j1|M

= diag(γ00, γ01, γ10, γ11), (29)

where γi j = pi j for i, j = 0, 1. From equations (21) and (22),
we obtain

I (1)
C (Nd) = 1 − H(p) − p log2 3. (30)

After the first transmission, the density operator of the
memory state is replaced by ρ00

M , ρ01
M , ρ10

M and ρ11
M with

probability 1 − p, p
3 , p

3 , p
3 , respectively, where

ρ00
M = diag(p00|00, p01|00, p10|00, p11|00),

ρ01
M = diag(p00|01, p01|01, p10|01, p11|01),

ρ10
M = diag(p00|10, p01|10, p10|10, p11|10),

ρ11
M = diag(p00|11, p01|11, p10|11, p11|11).

(31)

Similar to the calculation of the phase flip channel, we obtain

I (2)
C (Nd) = (1 − p)S

(
ρ00

M

)
+

p

3

[
S

(
ρ01

M

)
+ S

(
ρ10

M

)
+ S

(
ρ11

M

)]
= 1 + r0(1 − p) log2 r0 + r1 p log2 r1

+ r2(3 − p) log2 r2 + r3 log2 r3, (32)

where r0 = (1 − p)(1 − µ) + µ, r1 = (1 − p)(1 − µ),
r2 =

p
3 (1 − µ) and r3 =

p
3 (1 − µ) + µ. Actually, we can

derive that the maximal coherent information for other

5
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μ

∞

Figure 2. The lower bound of quantum capacity of the depolarizing
channel QL

M (Nd) as a function of the degree of memory of the
channel for p = 0.15.

transmissions are the same as I (2)
C , which yields the lower

bound of the quantum capacity of the memory depolarizing
channel as

QL
M(Nd) = lim

n→∞

1

n

[
(n − 1)I (2)

C + I (1)
C

]
. (33)

The relationship between the lower bound of the
quantum capacity of the depolarizing channel with Markovian
correlated noise QL

M(Nd) and the degree of memory of the
channel µ is depicted in figure 2. It can be found that
the capacity of this memory depolarizing channel increases
with increasing the degree of memory. We would like to
point out that for µ = 0, the lower bound of the quantum
capacity reduces to the hashing lower bound [24] of the
memoryless depolarizing channel QL

d = 1 − H(p) − plog23.
Moreover, the quantum capacity is maximized for the perfect
memory channel. Unlike the classical capacity, of which the
entangled input states may achieve a higher value than the
product input states for a proper degree of memory of the
channel [25]. The quantum capacities of the Pauli channels
are always maximized by the product input states for the
different definitions. It should be mentioned that for a general
memory Pauli channel N (ρA) =

∑3
i=0 piσiρAσ

†
i with more

than two Kraus operators, the quantum capacity can be only
lower bounded by our computation model, since the quantum
channel itself is physically limited to the two-dimensional
space. In fact, even for the memoryless depolarizing channel,
the exact quantum capacity formula of it has not been found
until now, and only a lower bound [24] and a tight upper
bound [4] are known.

4. Conclusion

A physical model including a memory state of finite
dimension for a class of quantum communication channels
with Markovian correlated noise has been investigated. Based
on this model, we have calculated the coherent quantum
information of Pauli channels with memory, which has
been shown to be maximized by the separable maximally

mixed input states. Then, the quantum capacities of these
channels have been evaluated based on the model with two
new methods. In particular, we have derived the quantum
capacities of the memory phase flip channel, bit flip channel
and bit-phase flip channel when considering the number
of channel uses n → ∞. However, for the general Pauli
channels, the existence of four Kraus operators cannot match
the two-dimensional memory physically defined in the Pauli
channel model. So, we expanded the dimension of the
memory to four and remodeled the unitary operator of the
memory channel in order to evaluate the quantum capacity.
In particular, we have evaluated the quantum capacity of the
memory depolarizing channel and first derived a lower bound
of it, which is consistent with the known hashing lower bound
for µ = 0. Actually, due to the limitation of the model, we
could only obtain the lower bound of the quantum capacity
of the Pauli channel with more than two Kraus operators. It
should be mentioned that all the calculated quantum capacities
increase with increasing memory of the quantum channels,
and reach the maximum for the perfect memory (µ = 1),
which implies that the channels are asymptotically noiseless.
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