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Abstract We present a dense coding network based on continuous-variable graph
state along with its corresponding protocol. A scheme to distill bipartite entanglement
between two arbitrary modes in a graph state is provided in order to realize the dense
coding network. We also analyze the capacity of network dense coding and provide a
method to calculate its maximum mutual information. As an application, we analyze
the performance of dense coding in a square lattice graph state network. The result
showed that the mutual information of the dense coding is not largely affected by
the complexity of the network. We conclude that the performance of dense coding
network is very optimistic.

Keywords Quantum · Dense coding · Graph state · Mutual information

1 Introduction

Quantum dense coding is a communication protocol which, making use of an entangled
state shared by a sender and a receiver, enables the communication of two classical
bits with the transmission of only one quantum bit. The concept of quantum dense
coding was first proposed by Bennett and Wiesner in Ref. [1]. Quantum dense coding
can be realized via various entanglements [2–6], and it’s experimental implementation
in continuous variables is also investigated in recent years [7–10].
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2438 J. Zhang, G. He

Previous researches based on dense coding mainly focused on the point-to-point
(P2P) communication, while the ultimate aim of communication, as we all know, is to
derive the bipartite communication to a network-like system which involves multiple
users. In Ref. [6], the performance of quantum dense coding via a N-qubit entanglement
is evaluated. It showed that using maximally entangled qubits is more efficient than
pairwise entangled qubits when N is very large. However, no detailed analysis is
provided about how to implement dense coding in multiple entanglement states. In Ref.
[11], by introducing a special cluster state, the author provide a protocol to implement
many-to-one dense coding. However, such cluster state must be restrictedly designed
in order to realize the protocol, so it is lack of generalization and application. In this
paper, a graph state is used to serves as the entangled resource of dense coding. It
enables us to generalize a P2P fixed communication to an any-to-any one which can
be applied in future quantum network system.

In our paper, we present a continuous-variable (CV) dense coding network based on
an arbitrary graph state and provide its corresponding protocol. Previous researches
have already provided some methods to extract entanglement pairs in graph states
[12,13]. The restriction of these methods is that the two mode used to distill direct
entanglement should be preassigned, in other words, only one bipartite entanglement
can be distilled from a given graph state. In contrast, our method in this paper can
be used in any two modes in a graph and can distill different bipartite entanglements
according to different requirements. This progress is significant because it allows us to
use the entanglement resource of graph states more thoroughly and makes it possible
to form multipartite quantum communication, not only dense coding. What is more,
our protocol is likely to be experimentally realized since the preparation methods of
simple graph state is already widely investigated through linear optics [14,15].

This paper is structured as follow. We start by introducing some notions of
continuous-variable graph states: we give two methods of the distillation of CV graph
states, and proceed by providing a universal dense coding protocol which can be
applied on any two modes in a graph state. This protocol is the main result of this
paper. In Sect. 3, we analyze the communication capacity, which is characterized by
the mutual information of network dense coding in our protocol. A typical application
based on square lattice network system is provided in Sect. 4. Finally, we draw our
conclusion in Sect. 5.

2 Protocol of dense coding network via graph states

2.1 Basic cognations of CV Graph states

A graph state is a special multiparticle entangled state that can be expressed by a
mathematical graph [16]. In a typical graph, each vertex represents a zero-momentum
eigenstate( p̂ = 0) and each edge represents a quantum nondemolition (QND) interac-
tion [17]. The QND coupling, characterized by Hamiltonian Hi j = h̄χi j x̂i x̂ j , trans-
forms the position and momentum quadratures of two initially isolated mode i and j
into the following expressions in the Heisenberg picture [18]:
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Continuous-variable graph states 2439

x̂ g
i = x̂i , p̂g

i = p̂i + gi j x̂ j ,

x̂ g
j = x̂ j , p̂g

j = p̂ j + g ji x̂i . (1)

where gi j = g ji = −χi j ti j is the gain of the interaction. χi j and ti j are the coupling
coefficient and the interaction time, respectively. As we can see in Eq. (1), after the
QND coupling process, the momentum p̂i and p̂ j pick up the information of the
position x̂i and x̂ j while the position of the two modes remain unchanged.

Then, for a general N-mode graph state, so long as the adjacency matrix is deter-
mined, any modes can be described as

x̂ g
i = x̂i ,

p̂g
i = p̂i +

N∑

j=1

gi j x̂ j , i = 1, 2, · · · N . (2)

Here, x̂i = eri x̂ (0)
i and p̂i = e−ri p̂(0)

i mean all modes are initially prepared in the
squeezed vacuum state. ri is the squeezing parameter and the superscript (0) denotes
the initial vacuum modes. In our protocol, we first assume all modes are infinitely
squeezed, i.e., ri → ∞ and later consider the nonideal cases where ri is a finite
number so the noise terms are added. In order to express all modes in one equation,
we let G denote the adjacency matrix with gi j being the QND coupling coefficient
and R̂ denote a 2N-dimensional row vector representing the modes’ quadratures, i.e.,
R̂ = (x̂1 · · · x̂N | p̂1 · · · p̂N ). Then we can rewrite Eq. (2) as

X̂ g = R̂

(
I

0

)
,

P̂g = R̂

(
G

I

)
. (3)

The above matrix forms would greatly simplify our calculations in later sections.

2.2 Two fundamental operations to distill CV graph states

In order to realize quantum network dense coding and provide corresponding protocol,
two primary methods are necessary to distill or, in other words, simplify a certain graph
state.

(1) Disconnection. This operation is executed by measuring the position of mode i and
then performing a displacement operator D̂(−gi j x̂i ) on the momentum quadrature
of all neighbors of mode i [12,13,18] (D̂(s) operated on α means a → α + s).

p̂g
j → p̂ j − gi j x̂i . (4)

where mode j is one neighbor of mode i . This operation reduces the scale of graph
state from N mode to N-1 mode, so it can be regarded as the inverse operation
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2440 J. Zhang, G. He

Fig. 1 A linear graph state with
three modes

of the QND coupling process. Disconnection is often used to modify a graph
state where direct distillation of the bipartite entanglement between two specified
modes can not be performed.

(2) Recasting. This is the key process of the bipartite entanglement distillation. The
process of this operation can be described in the following three steps.
(i) Measure the momentum quadrature of mode i;

(ii) Perform D̂(−ĝi j p̂i ) on the position quadrature of one of its neighbor, i.e.,

x̂ g
j → x̂ j − ĝi j p̂i . (5)

(iii) Perform an inverse Fourier transformation [12], acting as x̂ → − p̂ and
p̂ → x̂ on both the position quadrature and momentum quadrature of mode
j . The result is identical to mode j directly entangled with the neighbors of
mode i (expect j itself) and carrying the information of mode i while both
mode j and the entanglement between mode i and j are destroyed. Here we
give an example to illustrate recasting process. Suppose there are only three
modes in a graph state and all QND coupling coefficients gi j equal to unity
(see Fig. 1).

The initial states are described as:

{
x̂ g

1 = x̂1,

p̂g
1 = p̂1 + x̂2,

{
x̂ g

2 = x̂2,

p̂g
2 = p̂2 + x̂1 + x̂3,

{
x̂ g

3 = x̂3,

p̂g
3 = p̂3 + x̂2,

(6)

In order to build connection between mode 1 and mode 3, we measure p̂g
2 and perform

D(− p̂g
2 ) on x̂ g

1 ,

{
x̂ g

1 = x̂1 − ( p̂2 + x̂1 + x̂3),

p̂g
1 = p̂1 + x̂2,

(7)

Then, we perform an inverse Fourier transformation on x̂ g
1 and p̂g

1 which results as:

{
x̂ g

1 = p̂1 + x̂2,

p̂g
1 = p̂2 + x̂3,

(8)

123

Author's personal copy



Continuous-variable graph states 2441

Since p̂1 → 0 as we assumed in the head of the section, mode 1 is now directly
connected with mode 3.

As we have shown, this operation creates a new entanglement between two initially
indirectly connected modes. By performing the recasting operations to all the modes
between the source and target mode which we want to form communication, the chain
between the two modes would be shortened and finally link the two modes together
directly. Since this operation reconstruct the graph by destroying some modes but
keeps their information in the remaining modes, just like we melt the metals and
recast them into new shapes, we name this operation as recasting.

2.3 Process of setting up bipartite entanglements

Here we provide a method for distilling bipartite entanglements of two arbitrary modes
from a graph state network.

We randomly select two modes from the graph, sender Alice and receiver Bob,
denote them as mode a (x̂a, p̂a) and mode b (x̂b, p̂b). Our aim was to obtain the
following equation, that Alice’s mode and Bob’s mode are directly entangled, forming
an EPR pair [19]

(I) X̂ A − X̂ B = 0, P̂A + P̂B = 0,

(II) X̂ A + X̂ B = 0, P̂A − P̂B = 0. (9)

The first equation above is the correlation between position-momentum quadratures
for ideal EPR state. The second one is a modified form of the first one by simply
applying a Fourier transform on both quadratures. These two equations are equiva-
lent because the entanglement is not affected by local unitary transformation. Here,
(X̂ A, P̂A) represents the final state of Alice after performing a series of displacement
operators on the initial mode (x̂a, p̂a). These displacements are caused by recasting
operations, which is described in previous section. Bob’s state does not change, but for
clarity, we use (X̂ B, P̂B) to denote the final mode of Bob; then, in order to implement
dense coding, the final two modes should satisfy one of the following two equations.

(I) x̂ g
a − u = x̂ g

b ,

− p̂g
a − v = p̂g

b .

(II) − x̂ g
a − u = x̂ g

b ,

p̂g
a − v = p̂g

b . (10)

where u and v are the linear combination of pg
i , causing by the recasting operations.

u =
N∑

i �=a,b

αi pg
i = R̂

(
Gab

Iab

)
α,

v =
N∑

i �=a,b

βi pg
i = R̂

(
Gab

Iab

)
β. (11)
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2442 J. Zhang, G. He

Here, Gab indicates a N×(N−2)matrix derived from adjacency matrix G by removing
the ath and bth column. Iab is similarly defined. α and β are (N − 2)-dimensional
column vectors which would be determined by equations. Notice the condition that
when a graph state only has two modes, α and β turn into zero vectors, and the graph
state is equivalent to an ideal squeezed two-mode state (EPR pair).

By using the early assumption that the momentum quadrature of all states are
infinitely squeezed, we can express Alice and Bob’s modes as

x̂ g
a = R̂

(
Ia

∀
)

, p̂g
a = R̂

(
Ga

∀
)

,

x̂ g
b = R̂

(
Ib

∀
)

, p̂g
b = R̂

(
Gb

∀
)

. (12)

Here Ia means the ath column of matrix I . Ib, Ga and Gb have the similar meaning.
Now, we can express Eq. (10) in matrix form

(I)

(
Ia

∀
)

−
(

Gab

Iab

)
α =

(
Ib

∀
)

−
(

Ga

∀
)

−
(

Gab

Iab

)
β =

(
Gb

∀
)

(II) −
(

Ia

∀
)

−
(

Gab

Iab

)
α =

(
Ib

∀
)

(
Ga

∀
)

−
(

Gab

Iab

)
β =

(
Gb

∀
)

(13)

After simplification, we obtain the following equation

(I)
(
Gab| − Ia

) (α

1

)
= −Ib,

(
Gab| + Ga

) (
β

1

)
= −Gb,

(II)
(
Gab| + Ia

) (α

1

)
= −Ib,

(
Gab| − Ga

) (
β

1

)
= −Gb. (14)

Equation (14) is a binary linear equation set, according to the knowledge of linear
algebra, we obtain the discriminants

(I) rank(Gab| − Ia) = rank(Gab| − Ia | − Ib)

rank(Gab| + Ga) = rank(Gab| − Ga | − Gb)

(II) rank(Gab| + Ia) = rank(Gab| − Ia | − Ib)

rank(Gab| − Ga) = rank(Gab| − Ga | − Gb) (15)
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Continuous-variable graph states 2443

If the above two equations are satisfied, it means that we can directly distill a bipartite
entanglement between mode a and mode b. If not, then some disconnection operations
are needed to modify the initial graph state until Eq. (15) is satisfied. By solving vector
α and β, we can determine Eq. (10).

When all the modes are infinitely squeezed, u and v approach to zero since they
are the linear combinations of p̂i , so the squeezed two-mode state are now established
as in Eq. (9). However, since infinitely squeezed states can not be implemented in
pratice, noise conditions should be considered into our analysis. Noting that now u
and v are actually the total noise of all modes in the graph state ( expect the sender
and the receiver), we can simply express the noise terms as follow,

σ 2
x =

N−1∑

i �=a,b

αi
2e−2ri ,

σ 2
p =

N−1∑

i �=a,b

βi
2e−2ri . (16)

where 〈(�p(0)
i )2〉 = 1. We find that when the conditions are ideal, the bipartite entan-

glement we distilled is the same as squeezed two-mode state. Nevertheless, (9) also
holds for nonideal conditions just with the addition σx

2 and σp
2.

2.4 Universal protocol of quantum dense coding network

After the discussions in previous sections, we can now provide the universal protocol
of quantum network dense coding in CV graph states. This protocol is summarized in
five steps.

(i) For a given graph state, determine its adjacency matrix G;
(ii) Choose two modes from the graph, a sender (denoted as a) and a receiver (denoted

as b), to perform dense coding;
(iii) Put a, b and G into Eq. (15). If Eq. (15) is satisfied, then use Eq. (14) to solve

out vectors α and β;
(iv) If Eq. (15) is not satisfied, then use disconnection operations to discard some

modes of the graph state, perform step (iv) repeatedly until Eq. (15) is satisfied;
(v) Find the best solution which can obtain the maximum information capacity in

dense coding.

Steps (i)–(iii) are easy to understand since we have analyzed with details in previous
subsections. Step (iv) is not always necessary. We can use the methods described in
Ref. [12] to get the core graph of a certain graph to satisfy Eq. (14) if needed, but in
most cases this is not necessary because in an intentionally built graph state network,
the assumption that any two modes can form a bipartite entanglement relationship is
usually correct. For step (v), when Eq. (15) is satisfied, the number of solutions of
Eq. (14) is either one or infinity. So we need to select the best solution in order to gain
the largest mutual information, which is the measurement index of quantum dense
coding. The selecting methods will be discussed in Sect. 3.

123

Author's personal copy



2444 J. Zhang, G. He

Fig. 2 The topology structure of the dense coding scheme via CV graph state. Beam 1 and beam 2 come from
two modes in a graph state which has already formed bipartite entanglement. At Bob’s station, homodyne
detection is used to form the recovered mode (X̂ , P̂) (Color figure online)

3 Information capacity analysis

In this section, we discuss the communication quality of dense coding network via
CV graph state. Figure 2 shows the topological structure of the implementation of
dense coding, which is similar to that in Ref. [2]. We use α = 〈x̂〉 + i〈 p̂〉 to indicate
the classical signal Alice aims to transfer. This classical information is encoded as a
quantum mode (x̂s, p̂s), which is shown in Fig. 2. Then, two displacement operators
D̂(−x̂s) and D̂(− p̂s) are applied to X̂ A and P̂A separately. This operation encodes the
information into beam 1 which now becomes(X̂ A − x̂s, P̂A − p̂s), denoted as beam
3. Then, beam 3 is sent to Bob via a quantum channel. Bob decodes the classical
information with the aid of beam 2, another entanglement component generated from
the graph state network. The output of Bob, (X̂ , P̂) would equal to (x̂s, p̂s) if all the
conditions are ideal.

Now we calculate the mutual information of the communication between Alice and
Bob. First we recall the entanglement relationship between Alice and Bob as stated in
previous section, the modes of Alice and Bob now satisfy either of the following two
equations:

(I) 〈(X̂ A − X̂ B)2〉 → σ 2
x ,

〈(P̂A + P̂B)2〉 → σ 2
p,

(II) 〈(X̂ A − X̂ B)2〉 → σ 2
x ,

〈(P̂A + P̂B)2〉 → σ 2
p . (17)

where σx
2 = ∑N−1

i �=a,b αi
2e−2ri and σp

2 = ∑N−1
i �=a,b βi

2e−2ri are the graph state’s noise
terms which are stated in previous section. Then we identify the Gaussian probability
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Continuous-variable graph states 2445

distribution functions(PDF) of both the input signal and output state. We choose the
signal α to be distributed as

P(α) = 1

πσs
2 exp(−|α|2/σs

2). (18)

At Bob’s receiving station, homodyne detection is used to measure a quantum state
β, which is the coupling output of beam 2 and beam 3. According to the homodyne
statistics, the distribution of state β is given by

P(β) = 1

π(σ 2 + σs
2)

exp

( −2|β2|
σ 2 + σs

2

)
. (19)

with

σ 2 = σx
2 + σp

2 + e−2r . (20)

is the total noise term of the graph state including sender Alice and receiver Bob. Here
e−2r is the initial noise of the squeezed two-mode state. The conditional probability
of the resulting outcome of ideal homodyne detection is

P(β|α) = 2

πσs
2 exp

(
−2|β − α/

√
2|2

σs
2

)
. (21)

The two-dimensional mutual information describing the dense coding channel capacity
is then given by

I =
∫

d2αd2β P(β|α)P(α) ln

(
P(β|α)

P(β)

)
. (22)

Put Eqs. (18)–(21) into Eq. (22). After simple calculations, we have

I (A : B) = ln

(
1 + σs

2

σ 2

)
. (23)

This equation is quite similar to the Shannon Theory. To simplify our calculations, we
suppose that all modes in the graph states are equally squeezed, i.e., ri → r for all i .
Then, put Eqs. (20) and (16) into Eq. (23), we have

I (A : B) = ln

{
1 + σs

2

e−2r [∑N−1
i �=a,b(α

2
i + β2

i ) + 1]

}
. (24)
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2446 J. Zhang, G. He

Clearly, the maximum mutual information is reached when
∑N−1

i �=a,b(α
2
i + β2

i ) has
the minimum. Recall Eq. (14), of which solution can be expressed as:

α = ηα0 +
n∑

i=1

ciξαi ,

β = ηβ0 +
n∑

i=1

diξβi , i = 1, 2, · · · n, (25)

hereηα0 , ηβ0 are particular roots and ξαi , ξβi are general roots; cαi ,dβi are undetermined
real coefficients and n = rank(G2:N−1| − I1). By choosing certain ci and di , we can
find the minimum of αT α + βT β, thus obtaining the maximum mutual information.

The above step are more of an algorithmic problem but can be easily solved once
the adjacency matrix is given. Typical examples will be provided in next section to
explain this step in detail. Notice that the mutual information obtained using ideal
EPR state for entanglement resource [2] is

IEPR = ln

(
1 + σ 2

e−2r

)
. (26)

which is just slightly different from what we have attained in Eq. (24). In Sect. 4, we
will show by examples that the information capacity is not seriously effected when
the scale of network is not so large. This means that we can do dense coding with
arbitrary modes in the same network without obvious information loss.

4 Application: Dense coding via square lattice graph states

In practical experiments, by considering the efficiency and practicality, it is important
to find out the number of bipartite entanglements that can be directly distilled from
a certain network(without extra disconnections process). In this section, we focus on
the properties of a (N × N ) square lattice network. We will find out the features of
direct bipartite entanglements in the network and then evaluate the mutual information
of dense coding in the network.

4.1 The number of direct bipartite entanglements

First, we consider a 3 × 3 square lattice network (see Fig. 3).
First we select mode 1 to be the sender. By putting n = 1 and the adjacency matrix

G into Eqs. (14) and (15), we get the solution that m = 9, which means mode 9 can
be the receiver, i.e., the bipartite entanglement between mode 1 and mode 9 can be
directly distilled without any modifications of the network. Similarly, we put n = 2
into Eqs. (14) and (15). The solution is m = 4, 6, 8. This means that any two modes
among 2, 4, 6, 8 can form a bipartite entanglement (see Fig. 4b). The rest can be
done in the same method. Finally, we can solve out the number of direct bipartite
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Continuous-variable graph states 2447

Fig. 3 An 3 × 3 network, each
mode with a serial number
indicates a quantum state, here
we set the gain of interaction gi j
to unity for simplification

(a) (b) (c)

Fig. 4 Bipartite entanglement in 3 × 3 square lattice network. In each subfigure, any two modes in red can
be distilled to form a bipartite entanglement without the modification of graph state (mode 1, 9 in a; mode
2, 4, 6, 8 in b; mode 3, 7 in c) (Color figure online)

entanglements that can be distilled from 3 × 3 network, that is S3 = 2 + C2
4 = 8.

All the conditions are showed in Fig. 4. Notice that for any other two modes in the
network such as mode 1 and mode 2, an entanglement can also be distilled out just
with a simple modification process [12].

Similarly, in a 4 × 4 square lattice network, all direct bipartite entanglements are
shown in Fig. 5. The number of direct bipartite entanglements is S4 =2+2+2C2

4 =16.
From what has been stated above, we can generalize the conditions to a N × N

square lattice network by mathematical induction. Any two modes of the rectangles
or diagonals with have the same center as the whole network can be distilled directly
to form a bipartite entanglement. The number of entanglements is

Sn+1 = 3

2
n2 + n − 1

2
sin2 nπ

2
, n ≥ 1. (27)

4.2 Capacity analysis

We first use Fig. 4a as the example to calculate the information capacity of dense
coding. Note that the number of modes in this network is 9. We let mode 1 to be the
sender (Alice) and mode 9 to be the receiver (Bob). From the analysis above, we know
that these two modes can form direct bipartite entanglement without the modification
of the network, i.e., Eq. (14) is satisfied. Put n = 1, m = 9 into Eq. (15) we have
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2448 J. Zhang, G. He

Fig. 5 Bipartite entanglements
in 4 × 4 square lattice network

(a) (b)

(c) (d)

(e) (f)

(
α

k1

)
= ηα0 + c1ξα1 + c2ξα2 ,

(
β

k2

)
= ηβ0 + d1ξβ1 + d2ξβ2 . (28)

Here, ηα∗, ηβ∗, ξα1, ξα2 andξβ1, ξβ2 are all determined column vector, while c1, c2
and d1, d2 are undetermined coefficients.

Without loss of generality, we suppose all states in the network are equally squeezed
and the squeezing parameter ri = r, 1 ≤ i ≤ N . Thus Eq. (24) can be rewritten as:

I (A : B) = ln(1 + kσs
2e2r ). (29)

where k = (
∑N−1

i �=a,b(α
2
i + β2

i ) + 1)−1. c1, c2 and d1, d2 are easy to be solved out to

obtain the minimum of
∑N−1

i �=a,b(α
2
i + β2

i ). After simple calculations, we have k =
0.2143. Similarly, the maximum mutual information between other modes which are
shown in Fig. 4 only differs in a very small region. By calculation, we have k = 0.1778
for mode 2, 4, 6, 8 and k = 0.1976 for mode 3, 7. Therefore, we use the information
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Fig. 6 The lines show the relationship of normalized maximum mutual information and SNR. I (A : B) =
0.5 is the maximum mutual information for classical communication (highlighted as a red line in the graph),
which means that all curves above the line are acceptable (Color figure online)

capacity prosperity of the dense coding between mode 1 and mode N 2 to estimate the
total performance of a network with given scale.

Then, we consider the maximum mutual information in a larger network. By default,
we use mode 1 and mode N 2 for dense coding. We find out that k = 0.1714 when the
network scale is (4 × 4), k = 0.1427 for (5 × 5) and k = 0.1157 for (6 × 6). Note that
the maximum mutual information of traditional dense coding using EPR state is given
in Eq. (26). To estimate the performance of dense coding network via graph state, we
normalize I (A : B) with a division of IEPR.

I0(A : B) = I (A : B)

IEPR
. (30)

Then, we sketch the normalized maximum mutual information with σ 2e2r as indepen-
dent variable (Fig. 6). Note that σ 2e2r can be considered as the SNR of the communica-
tion system that could be set by Alice and Bob. The graph shows that the performance
of our protocol can always beat the classical communication when σ 2e2r is not very
small. From the graph, we see that when SNR ≥ 13, the dense coding capacity in
3 × 3 network can already beats the classical one. And when SNR ≥ 60, which can
also be easily realized, dense coding in 6 × 6 network can also be meaningful.

5 Conclusion

In summary, we have shown how to perform quantum dense coding between arbitrary
two modes in a given CV graph state along with the corresponding protocol. A universal
method is given to distill an any-to-any bipartite entangled state in a graph state
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network. This method is not restricted by the structure of the graph or the positions of
the two selected modes. With the consideration of noise that caused by finite squeezing,
we proved that the performance of dense coding network is very good with only little
capacity loss which is in our acceptable scope. By changing the value of SNR, the
information capacity can always beat classical communication. Regarding the great
facility and efficiency brought by any-to-any communication instead of fixed P2P one,
the result we gained is significant.
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