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We propose a quantum-cryptography network based on a continuous-variable graph state along with its
corresponding quantum key distribution (QKD) protocol. It allows two arbitrary parties in the graph state to share
a secret Gaussian key (any-to-any QKD). A mathematical model is established to determine an arbitrary graph
state’̄s properties, including the possibility of QKD and the relevant criteria. The general entangling cloner attack
strategy is analyzed in detail employing Shannon information theory. Results show that the proposed network is
secure against such attack if the graph state meets certain criteria.
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I. INTRODUCTION

Quantum key distribution (QKD), as a promising applica-
tion of quantum information science, enables two partners—
Alice, the sender, and Bob, the receiver—to share a secret key
with full security. After almost three decades of development,
the point-to-point (P2P) QKD scheme is quite mature and
has been experimentally realized in telecommunication fibers
[1,2]. Moreover, since Townsend et al. first discussed and
realized the QKD network in a series of works [3–5], many
QKD network topologies which aimed to implement one-to-
any or any-to-any QKD have been proposed using an optical
method [6–9]. In these QKD networks, optical switches, beam
splitters, or wavelength division multiplexers [9] were usually
employed as quantum routers (QR) to make Alice and Bob
directly linked by a quantum channel.

In some previous research [10–12], quantum networks
based on multipartite entanglement and graph states have
been discussed. These networks are aimed to perform quantum
teleportation, and some related experiments were performed
in [13]. In these cases, one can “distill” the entanglement and
teleport one quantum state to a target mode without the help
of a direct quantum channel. In our paper, the cryptography
network is proposed utilizing a graph state, which we consider
a promising way to implement QKD without direct quantum
channels. By using simple measurements and operations, we
extract direct entanglement through indirect entanglement,
thus acquiring the necessary factor to implement QKD.

In this paper, we introduce a continuous-variable (CV)
QKD network based on an arbitrary graph state along with
its corresponding QKD protocol. The relation between this
protocol and the previous proposals for QKD is analogous to
the relation between measurement-based quantum computa-
tion [14] and the circuital quantum computation [15]. Using a
multipartite entangled state can avoid the direct transmission
of quantum information. The network proposed in this paper
is an any-to-any QKD network; in other words, QKD can be
realized between two arbitrary modes, whether or not they are
directly linked. By using Shannon information theory, detailed
proof can be given to illustrate the security of this protocol
against the general entangling cloner eavesdropping strategy.

*Corresponding author: gqhe@sjtu.edu.cn

This paper is organized as follows. In Sec. II, we propose
a universal QKD protocol which can be used on an arbitrary
graph state. In Sec. III, we give a detailed analysis of the
protocol. Depending on the graph structure, some nodes may
need to be disconnected in order to obtain a “core graph”
that allows one to proceed with the protocol. We present
criteria to identify core graphs and the procedure to extract
core graphs from noncore ones. In Sec. IV, the security
analysis is presented by analyzing the general individual attack
strategy using an entangling cloner and calculating the mutual
information rate �IAB between Alice and Bob in the presence
of eavesdropper Eve. The conclusion is drawn in Sec. V.

II. PROTOCOL OF CV QKD VIA GRAPH STATES

A. Prerequisite notations about CV graph states

A graph state is generated by coupling a set of zero-
momentum eigenstates (p̂ = 0) by quantum nondemolition
(QND) interaction [14] characterized by the Hamiltonian
Hij = h̄χij x̂i x̂j . QND coupling between mode i and mode j

transfer the quadrature amplitude x (position) and quadrature
phase p (momentum) into the Heisenberg picture according to
the following expressions [11]:

x̂
g

i = x̂i , p̂
g

i = p̂i + gij x̂j , x̂
g

j = x̂j , p̂
g

j = p̂j + gji x̂i ,

(1)

where gij = −χij tij is the gain of the interaction, and χij

and tij are the coupling coefficient and the interaction time,
respectively. This Hamiltonian makes momentum p̂

g

i and p̂
g

j

pick up the information of the position x̂j and x̂i while the
position remains unchanged. The QND coupling of light can
be performed by linear optics [16] and was widely investigated
in experiments [11].

For an arbitrary N-modes graph state, any modes can be
described in the Heisenberg picture by

x̂
g

i = x̂i , p̂
g

i = p̂i +
N∑

j=1

gij x̂j , i = 1,2, . . . N, (2)

where gij �= 0 only when modes i and j are neighbors.
Initially, all modes are prepared in the quadrature-phase

squeezed state x̂i = eri x̂
(0)
i and p̂i = e−ri p̂

(0)
i , where ri is the

squeezing parameter and the superscript (0) denotes the initial
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vacuum modes. In the ideal case, ri → ∞ represent the case
in which all states are infinitely squeezed.

In the following, we first clarify three major types of
operation that we used to realize QKD on graph states, and
then present the QKD protocol.

(1) The first one is called disconnection operation [12].
This type of operation is based on the concept of undoing
the coupling. By measuring the x (position) quadrature
of the target mode and then displacing the momentum of
all its neighbors by the product of the result (x) and the
corresponding gain (gij ), the target mode is disconnected from
the graph. This operation is the exact inverse transformation
of the QND interaction described in Eq. (1). Such an operation
simply discards the target mode and eliminates its influence
from the graph state.

(2) This one is simply the inverse Fourier transform,
denoted by F †, with this operator acting as x̂ → p̂ and
p̂ → −x̂.

(3) This is the displacement operation D̂(s). This operator
can be placed on either the position or momentum quadrature.
When performing D̂(s) on the position quadrature of mode
(a), we have xa → xa + s. In our case, s always represents the
result of a homodyne detection result.

In some previous research, operations (2) and (3) are
combined together as a “distill” operation [12,14]. But to
implement QKD, using them separately has better flexibility.

B. Universal protocol of graph-state QKD

Here we assume that a graph-state entanglement network
among several modes, including the sender and the receiver,
has been prepared. QKD can be realized by performing the
following four steps:

(i) Utilize the criteria (detail will be given in the next
section) to judge whether the graph state is suitable for QKD.
If it is, we call it a “core graph.” If not, disconnect a subgraph
from the original graph state to obtain a core graph. The
subgraph must contain the sender and the receiver. As we
will show in the section, if the criteria is already met, this step
can be skipped.

(ii) As soon as the criteria is met, perform a series
of measurements on the momentum quadrature p̂

g

i of the
necessary modes according to the graph-related coefficients α

and β. The detailed analysis will be given in the next section.
(iii) Apply a series of displacement operations on the

sender’s mode (Alice’s mode), then perform an inverse Fourier
transform on it (if needed). This step makes Alice and Bob
directly entangled. Their position and momentum quadrature
satisfy the following expression:

k1X̂A = X̂B, k2P̂A = P̂B, (3)

where k1 and k2 are nonzero graph-related coefficients known
by both sides.

(iv) The three steps above make it possible for Alice
and Bob to share pairs of entangled states without direct
transmission. In previous research, many protocols were
carried out after coherent states are sent to Bob or shared by
both sides [17–20]. In our work, the following steps are quite
similar to a traditional P2P QKD protocol. Since Alice and
Bob share entangled states, the measurement of quadrature of

one state gives Alice information on the same quadrature of
Bob’s state. In this protocol, they randomly choose to measure
either x or p. And then, they do a reverse reconciliation
(RR) to acquire information [as in the Bennett-Brassard 1984
(BB84) protocol, half of the key is unused] in case there is a
eavesdropper, i.e., Eve.

(v) After step (iv), Alice and Bob now share two correlated
Gaussian variables. Then they shall use a standard protocol for
privacy amplification [21] in order to distill the private key.

III. GENERAL CRITERIA OF A QKD-SUPPORTING
GRAPH STATE

In this section, we introduce a general approach to de-
termine whether a graph state can be used as a core graph to
implement QKD. Some properties and examples are also given
in this section.

A. Criteria detailed analysis

To simplify the discussion, let us assume the graph state
as an N-mode multipartite entanglement network with the
sender’s mode indexed 1 and the receiver’s mode indexed N.
Also, during the following detailed analysis, we assume all p̂i

are infinitely squeezed. We will consider the finite-squeezing
case at the end of the section.

For a given graph state, let G denote the adjacency matrix
with Gij = gij . Using the 2N-dimensional row vector R̂ =
(x̂1 · · · x̂N |p̂1 · · · p̂N ) to represent the quadrature vector after
squeezing, Eqs. (2) can be replaced by

X̂g = R̂

(
I

0

)
, P̂ g = R̂

(
G

I

)
, (4)

where G and I are the N × N matrix.
Also, due to the assumption that all p̂i are infinitely

squeezed, Eqs. (4) can be rewritten as

x̂
g

i = R̂

(
Ii

∀
)

, p̂
g

i = R̂

(
Gi

∀
)

, (5)

where Gi and Ii represent the ith column of matrix G and
unit matrix I , respectively. ∀ means arbitrary value since all
p̂i are infinitely squeezed, so that all pi ∼ 0, and they can be
multiplied by an arbitrary value.

To implement QKD, the final two states between Alice and
Bob should satisfy one of the following two equations:

(I) k1X̂A = X̂B, k2X̂A = X̂B.
(6)

(II) k1X̂A = X̂B, k2X̂A = −X̂B.

Here, k1, k2 are nonzero constant coefficients related to the
graph. As soon as Alice and Bob know the exact value of
k1 and k2, QKD can be implemented by multiplying either
k1 or k2 (depending on the quadrature that Alice measured)
with Alice’s detection result. The second equation in Eq. (6) is
“cross related,” and it can be transferred to be “direct related”
by simply applying the F † operator.

We now investigate under which conditions Eq. (6) can be
achieved by steps (ii) and (iii) in our protocol, i.e., by only
measuring momentum quadratures p̂

g

2 · · · p̂g

N−1 (ii) and then
performing a displacement D̂(s) on Alice’s state (iii).
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Therefore, assume we only apply the D̂(s) and F † operation
on Alice’s state, i.e., X̂A and P̂A are related to x̂1 and p̂1 by
a simple displacement. Then, Eq. (6) can be expressed as
follows:

(I) k1x̂
g

1 − u = x̂
g

N , k2p̂
g

1 − v = p̂
g

N ,
(7)

(II) k1x̂
g

1 − u = p̂
g

N , k2p̂
g

1 − v = −x̂
g

N ,

where u and v are displacement caused by the D̂(s) operator.
More specifically, u and v can be expressed as the linear
combination of detection results of momentum quadratures
p̂

g

2 · · · p̂g

N :

u = (
p

g

2 · · ·pg

N−1

)
α = R̂

(
G2:N−1

I2:N−1

)
α,

(8)

v = (
p

g

2 · · ·pg

N−1

)
β = R̂

(
G2:N−1

I2:N−1

)
β.

Here, G2:N−1, I2:N−1 represent a N × (N − 2) matrix consist-
ing of the second to (N − 1)th columns of G and unit matrix
I , respectively. α and β are (N − 2)-dimensional columns
vectors.

For a certain graph G, by substituting Eqs. (4), (5), and (8)
into Eq. (7) with R̂ canceled, we obtain equations with k1, k2,
α, and β as unknown variables:

(I) k1

(
I1

∀
)

=
(

G2:N−1

I2:N−1

)
α +

(
IN

0

)
,

k2

(
G1

∀
)

=
(

G2:N−1

I2:N−1

)
β +

(
GN

IN

)
.

(9)

(II) k1

(
I1

∀
)

=
(

G2:N−1

I2:N−1

)
α +

(
GN

IN

)
,

k2

(
G1

∀
)

=
(

G2:N−1

I2:N−1

)
β −

(
IN

0

)
.

If the equations have solutions, then we call the graph a core
graph. With a core graph, we can achieve correlated variables
[Eq. (6)] by steps (ii) and (iii) in our protocol, and thus we can
implement QKD according to the scheme devised in Sec. II.
Then, mathematically, the graph can be used as a core graph
to implement QKD. After simple calculation, Eq. (9) can be
simplified as

(I) k1I1 − IN = G2:N−1α, k2G1 − GN = G2:N−1β.
(10)

(II) k1I1 − GN = G2:N−1α, k2G1 + IN = G2:N−1β.

Putting unknown variables together into the same vector,
Eq. (10) can be further simplified to the following expression:

(I) (G2:N−1| − I1)

(
α

k1

)
= −IN ,

(G2:N−1| − G1)

(
β

k2

)
= −GN.

(11)

(II) (G2:N−1| − I1)

(
α

k1

)
= −GN,

(G2:N−1| − G1)

(
β

k2

)
= IN .

If the equation above has a solution, then we must get

(I) rank(G2:N−1| − I1) = rank(G2:N−1| − I1| − IN ),

rank(G2:N−1| − G1) = rank(G2:N−1| − G1| − GN ).
(12)

(II) rank(G2:N−1| − I1) = rank(G2:N−1| − I1| − GN ),

rank(G2:N−1| − G1) = rank(G2:N−1| − G1|IN ).

If either of two pairs of equations is satisfied and k1k2 �=
0, then graph G can be used as a core graph to implement
QKD. Moreover, by solving the equations, one can get the
final expressions of u and v and thus know the detail of the
displacement operation. Solving Eq. (11) is merely a linear
algebra problem, which we can solve by employing the Moore-
Penrose pseudoinverse method.

In cases where more than one solution exists, every valid
solution is a theoretically possible scheme to implement QKD.
Different schemes may have different k1 and k2 [described in
Eq. (3)]. Once the scheme is determined, the final state can be
obtained from Eqs. (7) and (8).

In our protocol, after u and v have been displaced on Alice,
the entanglement relationship is given in Eq. (3). Since we use
x̂

g

N and p̂
g

N to represent Bob’s state, we can get

X̂A = 1

k1
x̂

g

N , P̂A = 1

k2
p̂

g

N , X̂B = x̂
g

N , P̂B = p̂
g

N , (13)

where (X̂A,P̂A), (X̂B,P̂B ) means Alice’s and Bob’s state,
respectively.

However, it is impossible to acquire infinite squeezing in
practice. Thus, when the squeezing is finite and we still use
the method above to generate direct entanglement, some extra
noise will exist. According to Eq. (1), each p̂

g

i contains a p̂i and
p̂i �= 0 when the squeezing is finite. So, after multiplying either
k1 or k2 (which depends on the quadrature that Alice measured)
to Alice’s detection result and performing the inverse Fourier
transform (if needed), we can obtain the expression of extra
noise (with vacuum variance normalized to unity):

(I) N̂XA
=

N−1∑
i=2

αi p̂
(0)
i e−ri , N̂XB

= 0.

N̂PA
= k2p̂

0
1e

−r1 +
N−1∑
i=2

βip̂
(0)
i e−ri , N̂PB

= p̂
(0)
N e−rN .

(14)

(II) N̂XA
= k1p̂

0
1e

−r1 +
N−1∑
i=2

αi p̂
(0)
i e−ri , N̂XB

= 0.

N̂PA
=

N−1∑
i=2

βi p̂
(0)
i e−ri , N̂PB

= p̂
(0)
N e−rN .

The final expression of Alice and Bob’s states can be
given as

X̂A = 1

k1
x̂

g

N + N̂XA
, P̂A = 1

k2
p̂

g

N + N̂PA
,

(15)
X̂B = x̂

g

N , P̂B = p̂
g

N + N̂PB
.
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B. Further discussion about step (i)

The first step in our protocol is disconnection, which is used
to extract a core graph from an arbitrary graph in case the graph
cannot be used to implement QKD. For a QKD-supporting
graph, its quality can be evaluated by Eq. (13). The less the
extra noise, the better the communication quality (this will
be shown in the next section). When the graph states cannot
implement QKD directly, different ways of disconnection may
lead to different qualities. Here, we present a basic way to
generate the optimal core graph which leads to the smallest
noise:

(a) Polish. The first stage of disconnection is a series of
operations we call “polish.” This operation is based on the
fact that for any vertex (except Alice and Bob) with only
one neighbor, its neighbor should not be measured unless
we disconnect the vertex from the graph. This can be easily
proven: Assume a vertex like this has a index of i. Then
its neighbor contains the information of x̂i , which cannot be
eliminated through linear combination since this vertex only
has one neighbor. The detailed operation of polish can be
described as follows:

(1) Find a vertex (except Alice and Bob) with only a
neighbor and disconnect it.

(2) Once such vertex is disconnected, we simply trace back
to its only neighbor and do the disconnection operation again
if it also needs to be “polished off.”

The polish operation will not stop unless a vertex has more
than one neighbor. This operation can reduce the dimension
of adjacent matrix G and thus to some extent reduce the time
complexity O of the subsequent traverse step (ii). Figure 1
shows a simple example of polish.

(b) Traverse. This part is more of an algorithmic problem.
“Traverse” mean that Eqs. (11) are checked for all possible
subgraphs. Here we simply traverse the whole graph and find
all possible ways to extract a core graph according to Eq. (12).
Among all of these graphs, we select the one with the smallest
extra noise.

Note that when the adjacent matrix has a huge dimension,
traversing the entire graph can be extremely time consuming.
We can reduce the time complexity O at the cost of noise. In
such cases, we may have to find a good way rather than the best
way to extract a core graph, e.g., finding the shortest path by
using the Dijkstra algorithm [22]. This is because a graph with
no branches can be proven to be always QKD supporting. This
is easy to prove considering the unique form of single-pass

Alice
Bob

Disconnect

FIG. 1. (Color online) An example of “polish.”

2 3 4

5 6 7

Alice

Bob

other possible cilents.........

...... ......

......

...... ...... ......

1

8

FIG. 2. (Color online) Cellular cryptography network.

graphs’ adjacent matrices:⎛
⎜⎜⎜⎜⎜⎝

0 g12

g12
. . .

. . .

. . .
. . . g(N−1)N

g(N−1)N 0

⎞
⎟⎟⎟⎟⎟⎠

.

If there are an odd number of modes (N is a odd number)
on this single-pass graph, then condition (I) in Eq. (12) will
always be satisfied; if N is a even number, then condition (II)
in Eq. (12) will always be satisfied.

C. Application example: A QKD network

In this example, we use our QKD protocol and correspond-
ing criteria to present a “cellular cryptography network.” This
scheme enables two arbitrary clients to share quantum keys.
Unlike the traditional cellular mobile network, we choose
quadrilateral rather than hexagonal as the shape of the cells.
That is because a network with quadrilateral cells requires less
disconnection operations compare with hexagonal cells.

In Fig. 2, there are 3 × 2 cells and every cell has a “base
station” which connects to its neighbor cell. If a client (Alice)
in the picture wants to communicate with another client (Bob),
then the u and v can be given as (with all nonzero gij set to
unity)

u = p̂
g

2 − p̂
g

6 , v = p̂
g

7 − p̂
g

3 .

Also, by using the criteria, we can get k1 = 1, k2 = −1, and
an inverse Fourier transform is needed. In this case, p̂

g

4 and
p̂

g

5 are not used in constructing a direct entanglement between
Alice and Bob, which is because of the assumption that all
nonzero gij is set to unity. In practice, it is hard to make every
nonzero gij equal to 1. Thus, in most cases, every vertex in the
network needs to be measured.

IV. SECURITY ANALYSIS

A. Principle of general individual attack strategy

In our protocol, there is no direct transmission between
Alice and Bob (except for the case in which they are
neighbors). Thus, it would be impossible for Eve to eavesdrop
after the graph state is prepared. To acquire information, the
only way for Eve to eavesdrop is during the generation of
the graph state, or, more specifically, during the time when
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T 

G1:N-1
  QND
Coupler

(XB,PB)

(XE,PE)

(X’B,P’B)
Bob

Black Box

Eve
(XI2,PI2)

(X
I1
,P

I1
)

EPR

ˆ ˆ

ˆ ˆ

ˆ ˆ

ˆ ˆ

ˆ
ˆ

FIG. 3. Equivalent system diagram in the presence of Eve.

the QND coupled state is transmitted back to Bob. We now
explain this strategy in detail.

The entangling cloner is a system that allows Eve to guess
the results of Bob’s measurement [23]. This kind of system can
be described as a cloner creating two entangled outputs, with
Eve keeping one of them and sending the other one to Bob.
In the following analysis, we assume this system consists of
a beam splitter and an Einstein-Podolsky-Rosen (EPR) source
(see Fig. 4).

Here we consider security against individual attacks only.
The whole discussion, including notations, parallels the one
done in Ref. [23]. Suppose that Eve employs the entangling
cloner to eavesdrop on the channel and that she can perfectly
eavesdrop all of the classical information, including Alice’s
and Bob’s position in graph state, G, u, and v. In this case,
if Eve is to acquire information rather than obstruct the
communication, the best occasion for her to eavesdrop shall
be the transmission of Bob’s final state during the generation
of the graph state.

Let us suppose that the other modes in the graph, except
Bob, and the measuring apparatus of all of these modes are
hidden in a black box. The only output of this box is beam
(X̂B,P̂B), which is the QND coupled beam heading to Bob.
The whole system is equivalent to Fig. 3.

By using the entangling cloner, Eve takes in the output of
the black box as an input and produces two entangled outputs:
(X̂E,P̂E) and (X̂

′
B,P̂

′
B). The former is kept by Eve, and the

latter is sent to Bob through a perfect line.

B. Mutual information of reverse reconciliation (RR)

After the displacement operation and inverse Fourier
transform (if needed), Alice and Bob are entangled. The
measurement of a quadrature of her own state gives Alice
information on the same quadrature of Bob’s.

According to the Csiszar-Korner formula [24,25], the final
key rate should be expressed as

�I = γ IAB − IBE, (16)

where γ represents the efficiency of the reconciliation.
Considering Eq. (15), since x̂

g

N and p̂
g

N are Gaussian
variables, we have〈

x̂
g2
N

〉 = VxN0,
〈
p̂

g2
N

〉 = VpN0, (17)

where Vx = e2ri , Vp = ∑N
i=1 g2

iNe2ri . N0 is the vacuum vari-
ance. Also, the extra noise is the linear combination of
pi = p

(0)
i e−2ri , i = 1 · · · N [shown in Eq. (14)]. With vacuum

variance set to unity, we get

(I)
〈
N̂2

XA

〉 =
N−1∑
i=2

α2
i e

−2ri ,
〈
N̂2

XB

〉 = 0,

〈
N̂2

PA

〉 = 1

k2
2

e−2r1 +
N−1∑
i=2

β2
i e

−2ri ,
〈
N̂PB

〉 = e−2rN .

(18)

(II)
〈
N̂2

XA

〉 = 1

k2
1

e−2r1N0 +
N−1∑
i=2

α2
i e

−2ri ,
〈
N̂2

XB

〉 = 0,

〈
N̂2

PA

〉 =
N−1∑
i=2

β2
i e−2ri ,

〈
N̂2

PB

〉 = e−2rN .

To simplify the discussion, let us assume all squeezing
parameters ri are the same. According to [23,26,27], the con-
ditional variance VXB |XA

of X̂B knowing XA (the measurement
result of X̂A) represents the remaining uncertainty on X̂B

after measurement of X̂A giving the estimate k1XA of X̂B and
equal to

VXB |XA
= 〈

X̂2
B

〉 − |〈k1XAX̂B〉|
k2

1X
2
A

. (19)

When there is no extra noise [shown in Eq. (13)], we have
the uncertainty principle

VXB |XA

〈
P̂ 2

B

〉
� N2

0 = 1. (20)

Considering the increase of uncertainty caused by the extra
noise [shown in Eq. (15)] and the fact that the squeezed state
minimizes inequality, we obtain

VXB |XA
= 1

Vp

+ 〈
N̂2

XA

〉
. (21)

By measuring her state (X̂A) and multiplying the result (XA)
with k1, Alice deduces k1XA. Bob’s state (x̂g

N ,p̂
g

N + N̂PB
) is

then projected onto a position-squeezed state of squeezing
parameter sx = VXB |XA

N0
= VXB |XA

centered on (k1XA,0).

Similarly, if Alice measures the quadrature P̂A, then
Bob’s state is projected onto a momentum-squeezed state
of squeezing parameter sp = VPB |PA

= 1
Vx

+ 〈N̂2
PA

〉 + 〈N̂2
PB

〉
centered on (k2PA,0).

To eavesdrop a reverse reconciliation scheme, Eve needs
to guess Bob’s measurement result. As we presented in the
previous discussion, (X̂B,P̂B) is the input of the cloner, and
(X̂

′
B,P̂

′
B), (X̂E,P̂E) are its two outputs. Here, we assume the

conditional variances VXB |XE
and VPB |PE

can be minimized by
the best cloner.

Since Eve uses the best cloner, the channel can be
described by

X̂
′
B =

√
TX(X̂B + δX̂B ), P̂

′
B =

√
TP (P̂B + δP̂B), (22)

where〈
δX̂2

B

〉 = χXN0 = χX,
〈
δP̂ 2

B

〉 = χP N0 = χP . (23)

Here, TX and TP represent the transmission rates for each
quadrature (TX for X and TP for P ) of the beam splitter
that Eve uses to split apart the light. χX = 1

TX
− 1 + ε and

χP = 1
TP

− 1 + ε means the additive noise of each quadrature,
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FIG. 4. (Color online) The lines show the relationship between
�I and squeezing parameter r . Here we assume TX = TY = T , γ =
0.89, ε = 0.02, and that all nonzero gij are set to unity.

respectively. Usually, TX = TP = T and χX = χP = χ . The
ε in the expression means the excess noise during the
transmission.

Then we calculate the conditional variance in the presence
of Eve: Inside the entangling cloner, sketched in Fig. 4,
Eve injects into the beam splitter a beam (X̂I1,P̂I1) and
uses the other half pair of EPR-correlated beams (X̂I2,P̂I2)
to achieve maximal knowledge of (X̂I1,P̂I1). The inequality
on conditional variances for a reverse reconciliation can be
expressed as follows according to [23]:

VX
′
B |XA

VP
′
B |PE

� N2
0 , VP

′
B |PA

VX
′
B |XE

� N2
0 . (24)

The conditional variance depends on the amount of squeez-
ing that Alice and the graph generate in the black box. The
minimized conditional variances on X̂

′
B can be deducted in a

similar way to Eq. (19):

VX
′
B |XA,min = TX(χX + sx)N0, VP

′
B |PA, min = TP (χP + sp)N0.

(25)

We then have

VX
′
B |XE, min = N0

TP (χP + sp)
, VP

′
B |PE, min = N0

TX(χX + sx)
.

(26)

The mutual information can be given according to Shan-
non’s theory [28]:

IX
BA = 1

2
log2

〈
X̂

′2
B

〉
VX

′
B |XA

, IX
BE = 1

2
log2

〈
X̂

′2
B

〉
VX

′
B |XE

,

(27)

IP
BA = 1

2
log2

〈
P̂

′2
B

〉
VP

′
B |PA

, IP
BE = 1

2
log2

〈
P̂

′2
B

〉
VP

′
B |PE

.

Due to the fact that X and P have an equal possibility to
be chosen to measure, Eq. (16) can be rewritten according to
Eq. (27) as

�I = 1
2

(
γ IX

BA + γ IP
BA − IX

BE − IP
BE

)
. (28)

We can further simplify the equation as

�I = 1

4
log2

(
1

TXTP (χX + sx)β(χP + sp)(Vx + χX)1−β

)

+ 1

4
log2

(
1

TP TX(χP + sp)β(χX + sx)(VP + χP )1−β

)
.

(29)

The (sufficient) conditions for the security of an arbitrary
QKD-supporting graph state based on the reverse reconcilia-
tion protocol can then be expressed as

T 2
XT 2

P [(χX + sx)(χP + sp)]1+γ

× [(χX + Vx)(χP + VP )]1−γ < 1. (30)

This condition can be rewritten by using the definition of χX =
1

TX
− 1 + ε and χP = 1

TP
− 1 + ε, where ε means the excess

noise:

[TXTX(χX + Vx)(χP + VP )]1−γ

× [(1 − TX + TXε + TXsx)(1 − TP + TP ε + TP sp)]1 + γ < 1.

(31)

When r is large enough to make sx and sp smaller than 1, this
condition is always fulfilled for ε = 0 when the reconciliation
efficiency γ = 1. This result is similar and in conformity with
those obtained by previously proposed QKD protocols [19].
When γ < 1, the left-hand side of Eq. (31) increases as r

goes up, since Vx = e2r , Vp = ∑N
i=1 g2

iNe2r [Eq. (17)]. This
may finally lead to the insecurity of the protocol (Fig. 4).
Different graphs may also result in different secure ranges
since Vp = ∑N

i=1 g2
iNe2r : when other parameters are fixed,

bigger
∑N

i=1 g2
iN means the protocol can be secure only with

a smaller r .
Taking Fig. 2 as an example, Fig. 4 shows the relationship

between �I and squeezing parameter r under different T .
The values γ = 0.89, ε = 0.02 are typical values which can
be achieved experimentally; in fact, they are chosen quite
conservatively (so far, γ can reach 0.95 and ε can reduce
to 0.01) [29]. When r is small, �I increases significantly as r

goes up. However, the lines bend down as r keeps going up,
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FIG. 5. (Color online) The lines show the relationship between
the secret key rate and the losses (−10log10 T ) under different
reconciliation efficiency γ . Here we assume r = 2, ε = 0.02, and
that all nonzero gij are set to unity.
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FIG. 6. (Color online) The lines shows the relationship between
the secret key rate and the losses (−10 log10 T ). Here we assume
γ = 0.89, ε = 0.02, and that all nonzero gij are set to unity.

since γ < 1. This result is in conformity with what is discussed
above.

Figures 5 and 6 show the relationship between the secret key
rate and the losses (dB), which equals to −10 log10(T ) under
different γ and r , respectively. In Fig. 5, we can see that the
scheme with a higher reconciliation efficiency γ can tolerate
higher losses. More specifically, when γ = 1, the protocol
will always be secure. For Fig. 6, some unique conclusions
can be drawn: in the previously proposed P2P QKD scheme,
a larger squeezing parameter r usually means that the system
can tolerate higher losses. However, in our protocol, it is just
the opposite: we can see from the figure that a graph state
with smaller squeezing parameter r can tolerate higher losses
than those with larger ones. This is because of the special
properties of the graph state, which are described in Eq. (17).
In a graph state, Vx and Vp increase as r goes up. According to
Eq. (29), when T is small enough, increasing r will accelerate
the decrease of �I as T keeps going down.

We can draw some general conclusions when we combine
Figs. 4–6 together. For a QKD network described in our
protocol, whether it is secure or not depends on its adjacency

matrix G, squeezing parameter r , reconciliation efficiency γ ,
and transmission rate T . Although a smaller r leads to a longer
transmission distance, it would significantly reduce the secret
key rate if it is too small. Also, a higher T or γ always means
a higher key rate.

V. CONCLUSION

In this paper, we have proposed a CV QKD network and the
corresponding protocol based on graph states and homodyne
detection. In this QKD network, any two modes can launch a
communication whether or not they are directly linked. Also,
a general and efficient way, based on linear algebra, to devise
an implementable QKD scheme based on any graph states is
proposed. By examining adjacency matrix G with the criteria,
there may exist different QKD schemes. Also, by calculating
the conditional variance and the mutual information �I , the
proposed protocol is proven to be secure against the individual
attack strategy as long as Eq. (31) is satisfied. For any QKD-
supporting graph state (core graph) described in our protocol,
whether it is secure or not depends on its adjacency matrix
G, squeezing parameter r , reconciliation efficiency γ , and
transmission rate T .

So far, experimentalists have already generated four-mode
graph states [30] and an eight-mode Greenberger-Horne-
Zeilinger (GHZ) state [31]. Since we present a general
approach to implement QKD in this paper, the protocol
will still be valid when more sophisticated graph states are
generated.
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