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For the beam splitter attack strategy against quantum key distribution using two-mode squeezed states, the ana-

lytical expression of the optimal beam splitter parameter is provided in this paper by applying the Shannon information

theory. The theoretical secret information rate after error correction and privacy amplification is given in terms of

the squeezed parameter and channel parameters. The results show that the two-mode squeezed state quantum key

distribution is secure against an optimal beam splitter attack.
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1. Introduction

Quantum key distribution (QKD) provides a way
to securely distribute keys between the sender and
the receiver, traditionally as Alice and Bob.[1−4] The
security of QKD is guaranteed by the foundational
law of quantum mechanics.[5−7] At present, although
some weak laser pulse QKD protocols[8−12] offer the
same level of security as those based on single pho-
ton sources, the detection of single photon necessary
in the discrete variable (DV) QKD is still very diffi-
cult, while the Gaussian operation and heterodyne or
homodyne detection in the continuous variable (CV)
QKD[13−24] are easily experimentally implemented. In
addition, the CV QKD can provide a high channel
capacity, thus the CV QKD attracts the interest of
scientists around the world. Gaussian states, e.g. co-
herent state and two-mode squeezed state (CV entan-
gled states), are the suitable quantum carriers for pro-
cessing the CV quantum information.[25] In addition,
entanglement is the unique characteristic of quantum
physics,[26] and it is an important resource in quan-

tum information and quantum computation.[27] And
the entanglement plays a very important role in the
CV QKD. It is virtual entanglement that guarantees
the security of the CV QKD.[28] To take advantage of
both the experimentally mature homodyne detection
and the CV entangled states, the two-mode squeezed
state QKD using CV entangled states, which theoret-
ically has a higher channel capacity than the coher-
ent state QKD,[18] is proposed and analysed against
a beam splitter attack,[29] but the transmission coeffi-
cient of beam splitter in Eve’s measurement device is
assumed to be 0.5 and its analytical expression is not
given.

In this paper, the security of two-mode squeezed
state QKD against an optimal beam splitter attack is
analysed by applying the Shannon information theory.
The optimal beam splitter parameter and the theoret-
ical secret key rate are obtained. The paper is orga-
nized as fellows. In Section 2, the two-mode squeezed
state QKD protocol is outlined. In Section 3, the opti-
mal beam splitter parameter and the theoretical secret
key are given. In Section 4, the conclusions are drawn.
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2. Two-mode squeezed state

QKD protocol

The two-mode squeezed state QKD can efficiently
distribute keys between Alice and Bob (see Fig.1).
This protocol may be described generally by the fol-

lowing steps.

Step 1 Alice prepares entangled optical modes
â3 and â4 by applying two-mode squeezed operator
Ŝ(±r) to modes â1 and â2 according to the bit string
n1. If the ith bit of n1 is 0, apply Ŝ(r), otherwise ap-
ply Ŝ(−r), i.e. ni

1 = 0, Û = Ŝ(r);ni
1 = 1, Û = Ŝ(−r).

Fig.1. Schematic representation of quantum key distribution using two-mode squeezed states.

Ŝ(±r): two-mode squeezing operator, D̂(m): displacement operator, BS: beam splitter, η: the

transmission coefficient of BS. Arabic numerals denote the optical modes.

Step 2 Alice applies the displacement operator
D(M = A + iB) to mode â3, produces mode â5, en-
codes the messages m = α + iβ onto quantum carrier
â3, where α and β are drawn from Gaussian proba-
bility density distributions (PDF) A ∼ N(0,Σ 2) and
B ∼ N(0, σ2) respectively, where Γ ∼ N(µ,Σ 2) de-
notes that random variable Γ obeys Gaussian PDF
with the mean value µ and the variance Σ 2. Repeat-
ing the above procedures will produce the key string
n2.

Step 3 Alice sends modes â4 and â5 to Bob
through a quantum channel.

Step 4 Bob combines modes â8 and â9 (those
are â5 and â4 respectively in the absence of attacker
Eve) using beam splitter, producing modes â10 and
â11.

Step 5 Bob selects measurement bases (X11,
P10) or (X10, P11) according to the random bit string
n3, obtaining message bit string n4. If the ith bit of
n3 is 0, i.e. ni

3 = 0, Bob selects (X11, P10); if ni
3 = 1

Bob selects (X10, P11). Here X =
1
2
(â + â†) and P =

1
2i

(â− â†) denote the quadrature of mode â.

Step 6 Alice and Bob communicate with each
other and compare the encode basis and measurement
basis by a classical channel, if ni

1 = ni
3, then store the

corresponding ni
2 and ni

4; if ni
1 6= ni

3, discard ni
2 and

ni
4. Then the remaining bit strings n2 and n4 are dis-

tilled into a secret key by classical key reconciliation

and privacy amplification. From the calculation of the
mutual information I(α, β),[29] we can understand the
rationality of the basis selection.

3. Optimal beam splitter attack

strategy

The security analysis is an important issue in de-
signing quantum cryptography schemes. To analyse
the theoretical security of QKD, we must assume that
Eve can make any attack machine that is only re-
stricted by the physical laws, build its mathematical
mode and investigate its security by exploiting the in-
formation theory. It is an important and very difficult
task. Here we investigate only the security of QKD
against the special attack strategies.

3.1.Optimal beam splitter attack pa-

rameter

In this paper, the simple beam splitter attack
strategy is investigated (See Fig.1). Assuming that
Eve processes the quantum memory technology to
store quantum states tapped by beam splitter, then
she can measure them by applying the same measure-
ment base as that applied by Bob after Alice and Bob
have finished the key reconciliation. This fact will
simplify the calculation of the secret key rate.
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Firstly, the optimal measurement parameter is de-
termined by the exact analytical expression. Since
quadratures X and P are symmetrical, to simplify
analysis, here we discuss only the quadrature X, the
quadrature P can be analysed in a similar way. Ac-
cording to the results by He et al,[29] the quadrature
X15 of mode â15 is easily calculated as follow:

X15 =
√

ηX12 −
√

1− ηX13

=
√

ηη1X6 −
√

η(1− η1)A

−
√

(1− η)η2X7 − [
√

η(1− η1) cosh r

−
√

(1− η)(1− η2) sinh r]X1

− [
√

η(1− η1) sinh r

−
√

(1− η)(1− η2) cosh r]X2. (1)

Here Xi ∼ N(0,
1
4
), i = 1, 2, 6, 7, i.e. the input

quantum states are vacuum states, A ∼ N(0,Σ 2).
Obviously the signal-to-noise ratio between Alice and
Eve is

SNR(Alice,Eve) =
P

Q
, (2)

where P = Σ 2η(1− η1) and Q =
1
4
{[(η1 − η2) + (η2 −

η1) cosh 2r]η − 2
√

η(1− η)(1− η1)(1− η2) sinh 2r +
(1 − η2) cosh 2r + η2} are signal variance and noise
variance respectively. To eavesdrop the maximal in-
formation about Alice, Eve selects optimal beam split-
ter coefficient value ηm with SNR(Alice, Eve) reaching
its maximal value.

According to expression (2), the derivative is as
follows:

dSNR(Alice,Eve)
dη

=
4Σ 2(1− η1)

(
Q− dQ

dη
η

)

Q2
. (3)

Let
dSNR(Alice,Eve)

dη
= 0, then the optimal beam

splitter parameter will be obtained as follows:

ηE = ηm =
M

N
, (4)

where M = [(1 − η2) cosh 2r + η2]2, and N = (1 −
η1)(1− η2) sinh2 2r + [(1− η2) cosh 2r + η2]2.

To substitute η = ηm into expression (2), we can
obtain Eve’s maximal signal-to-noise ratio,

SNRmax(Alice,Eve) = SNR(Alice,Eve)(ηm). (5)

In the following, we will discuss Bob’s optimal
value of BS3. Since Bob does not know Eve’s attack
strategy, he selects only its optimal value provided

that Eve does not exist. When η1 = η2 = 0, then
Eve’s measurement procedure simulates that of Bob
without Eve. According to expression (4), we can
easily obtain the optimal coefficient of Bob without
Eve:

ηB = ηm|η1=η2=0 =
cosh2 2r

sinh2 2r + cosh2 2r
. (6)

According to expression (6), we can discuss the two
situations of the proposed scheme.

(1) When the squeezed parameter r = 0, i.e. the
coherent states are applied, then ηB = 1;

(2) When the squeezed parameter r →∞, i.e. the
perfect entanglement is used, then ηB = 1/2.

The first situation indicates that Bob will di-
rectly measure X11 of mode â11 in order to obtain
the maximal Alice’s information A, and this fact is
compatible with the Grosshans’s QKD scheme using
direct reconciliation.[18] The second situation shows
that Bob will set ηB =

1
2

when the perfect entangle-
ment is used. This fact proves the rationality of the
hypothesis in Ref.[29].

The expression of X11 is as follows:

X11 =(
√

η1η4 cosh r −
√

(1− η4)η2 sinh r)X1

(
√

η1η4 sinh r −
√

(1− η4)η2 cosh r)X2√
η4(1− η1)X6 −

√
(1− η2)(1− η4)X7

+
√

η1η4A. (7)

If Bob applies the optimal beam splitter parame-
ter, i.e. η4 = ηB, to measuring the X11 of mode â11,
then the signal-to-noise ratio is as follows:

SNR(Alice,Bob) =
R

S
, (8)

where R = 4Σ 2ηBη1, and S = (1 − η1)ηB +
(1 − η2)(1 − ηB) + [ηBη1 + (1 − ηB)η2] cosh 2r −
2
√

ηB(1− ηB)η1η2 sinh 2r.

3.2.The secret information rate

According to the Shannon information theory,[30]

the channel capacity of the additive white Gaussian
noise (AWGN) channel is

I =
1
2

log2(1 + γ), (9)

where γ = Σ 2/σ2 is the signal-to-noise ratio, Σ 2 and
σ2 are the variances of the signal and noise probabil-
ity distributions respectively. If the signal follows the
Gaussian distribution, and the channel is an AWGN
channel, then the channel capacity is the mutual in-
formation of the communication parties.
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Consequently, the mutual information between
Alice and Bob is

I(Alice,Bob) =
1
2

log2[1 + SNR(Alice,Bob)]. (10)

According to expressions (5) and (9), the maximal
mutual information between Alice and Eve is

Imax(Alice,Eve)

=
1
2

log2[1 + SNRmax(Alice,Eve)]. (11)

According to the Maurer theory,[31] the final key
is secure if I(Alice,Bob) > Imax(Alice,Eve), for in
this situation Alice and Bob may distill a secure key
by using the classical error correction and privacy am-
plification.

Fig.2. The contour line of secret key rate. r = 0,Σ =
1

4
.

Fig.3. The contour line of secret key rate. r = 1,Σ =
1

4
.

Fig.4. The contour line of secret key rate. r = 5,Σ =
1

4
.

Fig.5. The contour line of secret key rate. r = 10,Σ =
1

4
.

According to expressions (10) and (11), the theo-
retical secret key rate is as follows:

∆I =I(Alice,Bob)− Imax(Alice,Eve)

=
1
2

log2

1 + SNR(Alice,Bob)
1 + SNRmax(Alice,Eve)

. (12)

According to expression (12), the analytical expres-
sion of ∆I is very prolix, so we present a numerical
solution of ∆I in order to explain the relationship be-
tween ∆I and η1, η2 and then plot the contour line of
secret key rate ∆I.
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3.3.Discussion

From Figs.2–9, we can see that the smaller the
squeezed factor r is, the more the secret key rate ∆I

depends on η1 than η2. If r = 0, then ∆I > 0 when
η1 > 0.5, while ∆I is unrelated to η2. This can be
explained by the fact that r = 0 implies that modes
â5 and â4 are unentangled and independent of each
other, and only mode â5 carries useful information.
So ∆I depends only on η1. Modes â3 and â4 be-
come more and more related with r increasing. If
Eve does not exist (η1 = η2 = 1), the secret key rate

∆I = I(Alice,Bob) = log2

(
1+

2Σ 2

e−2r

)
becomes larger

with r increasing. On the other hand, Eve can take

Fig.6. The contour line of secret key rate. r = 0,Σ = 10.

Fig.7. The contour line of secret key rate. r = 1,Σ = 10.

advantage of the entanglement correlation to eaves-
drop Alice’s information, Figs.2–9 show that the se-
curity region becomes smaller and smaller with r in-
creasing. So increasing r can improve the channel ca-

pacity I(Alice,Bob) = log2

(
1 +

2Σ 2

e−2r

)
without Eve.

In addition, when r increases, Eve is more easily de-
tected by applying the entanglement parameter Fb be-
tween â3 and â4

[21]although the secure region becomes
smaller. Entanglement parameter F [21] describes the
entanglement degree of the entangled beams. If r be-
comes larger, the entanglement degree is higher. Thus
F is smaller. So Alice can calculate the initial Fa be-
tween â3 and â4, then statistically calculates the en-
tanglement parameter Fb between â′8 = â8 − m and
â9 through a reconciliation process. Eve can be easily
detected by comparing Fa with Fb.

Fig.8. The contour line of secret key rate. r = 5,Σ = 10.

Fig.9. The contour line of secret key rate. r = 10,Σ = 10.



1268 He Guang-Qiang et al Vol. 17

Reference [29] investigates the symmetrical beam
splitter attack against QKD by using two-mode
squeezed states, i.e. by assuming the transmission
parameter of beam splitter to be 0.5. The results
show that the scheme is secure against the symmet-
rical beam splitter attack. The more general attack
is the optimal beam splitter, for which Eve can se-
lect the optimal transmission parameter as the attack
parameter according to the quantum channel parame-
ters η1 and η2. By the optimal attack, Eve can obtain
the maximal information about Alice’s message for the
same disturbance level. In this paper, the analytical
expression of the optimal beam splitter parameter is
provided. The analytical results show that the pro-
posed scheme is still secure for an appropriate quan-
tum channel region, and it is also secure against a

more powerful optimal beam splitter.

4. Conclusion

The analytical expression of the optimal beam
splitter parameter against QKD using two-mode
squeezed states is provided in this paper by applying
the Shannon information theory. And the theoretical
secret key rate after error correction and privacy am-
plification is given in terms of the squeezed factor and
channel parameters. The results show that the two-
mode squeezed state QKD is secure against an optimal
beam splitter attack. When the squeezed factor r in-
creases, Eve can be easily detected, but the security
region become smaller.
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