
Study on the security of discrete-variable quantum key distribution over non-Markovian

channels

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2012 J. Phys. B: At. Mol. Opt. Phys. 45 135501

(http://iopscience.iop.org/0953-4075/45/13/135501)

Download details:

IP Address: 202.120.39.230

The article was downloaded on 31/05/2012 at 03:15

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-4075/45/13
http://iopscience.iop.org/0953-4075
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS B: ATOMIC, MOLECULAR AND OPTICAL PHYSICS

J. Phys. B: At. Mol. Opt. Phys. 45 (2012) 135501 (6pp) doi:10.1088/0953-4075/45/13/135501

Study on the security of discrete-variable
quantum key distribution over
non-Markovian channels
Peng Huang, Jun Zhu, Guangqiang He and Guihua Zeng

State Key Laboratory of Advanced Optical Communication Systems and Networks,
Department of Electronic Engineering, Shanghai Jiaotong University, Shanghai 200240,
People’s Republic of China

E-mail: peakeagle1985@hotmail.com

Received 10 February 2012, in final form 4 May 2012
Published 30 May 2012
Online at stacks.iop.org/JPhysB/45/135501

Abstract
The dynamic of the secret key rate of the discrete-variable quantum key distribution (QKD)
protocol over the non-Markovian quantum channel is investigated. In particular, we calculate
the secret key rate for the six-state protocol over non-Markovian depolarizing channels with
coloured noise and Markovian depolarizing channels with Gaussian white noise, respectively.
We find that the secure secret key rate for the non-Markovian depolarizing channel will be
larger than the Markovian one under the same conditions even when their upper bounds of
tolerable quantum bit error rate are equal. This indicates that this coloured noise in the
non-Markovian depolarizing channel can enhance the security of communication. Moreover,
we show that the secret key rate fluctuates near the secure point when the coupling strength of
the system with the environment is high. The results demonstrate that the non-Markovian
effects of the transmission channel can have a positive impact on the security of
discrete-variable QKD.

(Some figures may appear in colour only in the online journal)

1. Introduction

Quantum key distribution (QKD) [1–7] provides a novel
way to allow two distant authorized parties, the sender
Alice and the receiver Bob, to remotely establish a secret
key through quantum and classical channels. Generally, the
classical channel needs to be authenticated, i.e. the legitimated
parties identify themselves and a third party may listen to
the communication but cannot participate in it. However, the
quantum channel is open so that the third party can manipulate
the communication. The security of QKD originates from
the fundamental principles of quantum mechanics. More
precisely, the legitimated parties can estimate the security after
communication, since the leakage of information in a quantum
channel to eavesdropper, Eve, is quantitatively related to the
degradation of communication [3].

The unconditional security of QKD schemes with the
ideal system [8, 9] and practical system [10] has been proved
for several years. However, the ignorance of imperfection of

the practical QKD system still exists and limits Eve’s attack
strategy. So the unconditional security should be reconsidered
under more powerful attacks introduced by Eve. To avoid the
leakage of information from the loopholes of the imperfect
practical QKD system, many potential attacks [11–20] have
been proposed recently. The known considerations of the
imperfection of the practical QKD system are focused on
the practical system devices, and the quantum channels are
usually approximately considered to be Markovian, i.e. the
correlation time between the system and environment is
infinitely short so that the memory effects can be neglected. In
practice, the correlations between the system and environment
exist for a small finite period of time, which leads to the
quantum channel with memory [21]. In recent years, non-
Markovian effects have been investigated in the dynamics
of entanglement [22–24], quantum correlation [25], quantum
channel capacity [26] and the security of continuous-variable
QKD [27]. Moreover, the optical non-Markovian signatures
in semiconductor quantum wires have been achieved in an
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experiment [28]. Interestingly, it is shown in [27] that the non-
Markovian effects may be exploited to enhance the security of
continuous-variable QKD and detect eavesdropping along the
transmission line. However, the security analysis is addressed
in Gaussian individual attacks, whereas Eve’s collective
attacks are not being considered.

In this paper, we explore the security of discrete-variable
QKD schemes over non-Markovian quantum channels. In
particular, we investigate the dynamics of the secret key rates
for the six-state protocol [29, 30] by restricting consideration to
collective attacks, where the transmission quantum channels
are specified as non-Markovian depolarizing channels with
coloured noise and the Markovian one with Gaussian white
noise [21]. In contrast, we show that the secure secret key rate
for the non-Markovian channels may always be larger than
the Markovian ones. Moreover, we find that the nosier the
channels are, the more effectively the non-Markovian effects
will enhance the security of transmission. When the coupling
strength of the system with the environment is high enough,
the secret key rate fluctuates near the secure point.

This paper is organized as follows. In section 2,
we introduce the physical model we will investigate and
construct the non-Markovian depolarizing quantum channel
with coloured noise. We then briefly introduce the six-state
protocol, and calculate and analyse contrastively the dynamics
of the secret key rates and quantum bit error rate (QBER)
of the six-state protocol under collective attack for the non-
Markovian and Markovian depolarizing channels in section 3.
Finally, the conclusions are drawn in section 4.

2. The non-Markovian depolarizing channel with
coloured noise

In this section, we introduce the physical model under study,
i.e. the non-Markovian depolarizing channel with coloured
noise. As known, the evolution of the quantum system can be
described as a completely positive map (CPM) [31]. A known
depolarizing quantum channel can be expressed as the CPM
N (ρ) = (1 − p)ρ + (p/3)(σ1ρσ1 + σ2ρσ2 + σ3ρσ3), where
0 � p � 1, and σi for i = 1, 2, 3 are Pauli operators. This
CPM defines a depolarizing channel with white noise, which
comes from the Markovian master equation. However, the
Markovian master equation that describes the time evolution of
the quantum system is an approximation, since the correlation
time between the quantum system and environment is seen to
be infinitely short so that the memory effects can be neglected.
In practice, the correlation time is a small finite period of
time, which leads to the non-Markovian master equation. In
the following, we review the derivation of the depolarizing
channel with coloured noise [21].

A prevailing memory kernel master equation can be
described by

ρ̇ = KLρ, (1)

where K is an integral operator that depends on time acting
as the form KN = ∫ t

0 k(t − t ′)N (t ′)dt ′, L is a Lindblad
superoperator describing the dynamics due to the interaction of
the system and environment and ρ is the density operator of the

small system of interest. The solution to the master equation (1)
defines a completely positive and trace-preserving linear map
Nt : ρ → ρt that describes the evolution of a system coupled
to an environment.

A master equation of the form of equation (1) arises when
considering any two-level quantum system that interacts with
an environment possessing random telegraph signal noise. It is
possible to write a time-dependent Hamiltonian for this kind
of system,

H(t) = �

3∑
i=1

�i(t)σi, (2)

where �i(t) are independent random variables. Each random
variable can be defined as �i(t) = aini(t). The random variable
ni(t) has a Poisson distribution with a mean equal to t/2τi,
while ai is an independent coin-flip random variable assuming
the values ± ai. A model like this describes, for instance, a
spin-1/2 particle in the presence of three orthogonal magnetic
fields, each of which has a constant magnitude ai and inverts
randomly in time with a distribution given by ni.

By using the von Neumann equation ρ̇ = −(i/�)[H, ρ] =
−i

∑
k(t)[σk, ρ], one can obtain the solution for the density

operator of the form

ρ(t) = ρ(0) − i
∫ t

0

∑
k

�k(s)[σk, ρ(s)] ds. (3)

Applying the correlation functions of the random telegraph
signal 〈� j(t)�k(t ′)〉 = a2

ke−|t−t ′|/τkδ jk, and substituting
equation (3) back into the von Neumann equation and
performing a stochastic average, one obtains the memory
kernel master equation

ρ̇(t) = −
∫ t

0

∑
k

e−(t−t ′ )/τk a2
k[σk, [σk, ρ(t ′)]] dt ′. (4)

It can be seen from equation (4) that the state of the system
at time t depends on its past history. It is known that the
Fourier transform of the correlation function gives the power
spectrum of the environment. For white noise, the delta-
function correlation in time leads to a flat power spectrum
for the environment, and the system is equally coupled to all
frequencies of environment, while for the coloured noise, the
system prefers certain frequencies and a gives the coupling
strength of the system with environment while τ determines
the most preferred frequencies.

By assuming that the fluctuations τi are equal, one can
obtain the solution to equation (4) as a linear map Nt : ρ → ρt

on M2 [21]. This map is a generalization of the depolarizing
channel to the case of coloured noise, which can be written
in the form of Kraus decomposition Nt (ρ) = ∑

k A†
kρAk with

Kraus operators given by A1 = √
ξ1(ν)σ1, A2 = √

ξ2(ν)σ2,
A3 = √

ξ3(ν)σ3 and A4 = √
ξ4(ν)I, provided that the

following conditions are all satisfied:

ξ1 = 1
4 (1 + 	1 − 	2 − 	3),

ξ2 = 1
4 (1 − 	1 + 	2 − 	3),

ξ3 = 1
4 (1 − 	1 − 	2 + 	3),

ξ4 = 1
4 (1 + 	1 + 	2 + 	3), (5)
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where ν = t/2τ is the dimensionless time and 	i(ν) =
e−ν[cos(μiν) + sin(μiν))/μi] are damped harmonic
oscillators having frequencies μi =

√
(4κiτi)2 − 1 with

κ2
i = a2

j + a2
k for i �= j �= k. The restrictions in equation

(5) assure that the linear map Nt is completely positive. By
assuming τ → 0 and a → ∞, the random telegraph signal
reduces to a Gaussian white noise and equation (4) becomes
ρ̇(t) = − ∫ t

0 δ(t−t ′)
∑

k 2a2
kτ [σk, [σk, ρ(t ′)]] dt ′. This leads to

	i(t) = e−γit in equation (5) with inverse lifetimes γi = 4κ2
i τ .

It should be pointed out that, whether in the case of coloured
noise or white noise, there are examples of maps that are
positive but not completely [32–34]. The map is completely
positive if and only if the linear combinations in equation (5)
are non-negative.

3. Unconditional security of the six-state protocol
over a non-Markovian depolarizing channel

The six-state protocol is similar to the well-known BB84 four-
state protocol, but with an additional basis [29, 30]. In the six-
state protocol, Alice first generates a random bit k = −1, 1
and chooses one basis � randomly out of the three bases X , Y
and Z. Then Alice prepares and sends over a quantum channel
a qubit with the |�k〉 state, which is the eigenstate of the �

basis with the eigenvalue of k/2. Bob randomly chooses one
basis out of the three bases and measures the states along
the chosen direction. Alice and Bob compare the bases they
used via a public channel, and keep the bit value if the bases
match; otherwise they discard it. Lastly, Alice and Bob repeat
the above steps and apply bit error correction and privacy
amplification to obtain a shared key string.

The unconditional security bounds for the six-state
protocol [30] have been found in [35, 36] for the case where
the quantum signals are single qubits. As usual, the proof
for this prepare-and-measure (P&M) six-state scheme can
be performed by an entanglement-based (EB) scheme: Alice
produces the state |+〉AB = (1/

√
2)(|00〉AB + |11〉AB); then

she keeps the first qubit and sends the other one to Bob. This
state shows perfectly correlated outcomes in the X and Z bases
and perfectly anti-correlated outcomes in the Y basis. Bob may
flip his results when he measures with Y basis. Without loss
of generality, the symmetry of the six-state protocol implies
that one can compute the unconditional security bound by
restricting the consideration to collective attacks, and even
further, to those cases such that the final state of Alice and
Bob is Bell diagonal [3, 35, 36],

ρAB = λ1|+〉〈+| + λ2|−〉〈−| + λ3|�+〉〈�+|
+ λ4|�−〉〈�−|, (6)

where
∑

i λi = 1 and |±〉AB = (1/
√

2)(|00〉AB ± |11〉AB),
|�±〉AB = (1/

√
2)(|01〉AB ± |10〉AB). It should be emphasized

that the restriction for calculating the unconditional security
bound does not depend on the type of the quantum channel,
i.e. whether the quantum channel is with or without quantum
memory, the restriction is feasible. In particular, λi acts as
a function of time for the quantum channel with memory.
It can be seen that |±〉 give perfect correlation in the Z
basis, |+〉, |�+〉 give perfect correlation in the X basis, and

|+〉, |�−〉 show perfect correlation in the Y basis. Thus, the
QBER for the three bases are given by

εx = λ2 + λ4,

εy = λ2 + λ3,

εz = λ3 + λ4. (7)

Eve’s information IE is given by the Holevo bound

IE = S(ρE ) −
∑

a

p(a)S(ρE|a), (8)

where S is von Neumann entropy, a is a symbol of Alice’s
classical alphabet distributed with probability p(a), ρE =∑

a p(a)ρE|a is Eve’s partial state, with ρE|a being the
corresponding state of Eve’s ancilla state. Eve can purify the
state of ρAB such that S(ρE ) = S(ρAB) = H({λ1, λ2, λ3, λ4}),
and the bit a values 0 or 1 equiprobably in this attack. So we
obtain

IE = H({λ1, λ2, λ3, λ4}) − 1
2 S(ρE|0) − 1

2 S(ρE|1). (9)

The detailed computation of ρE|b [2] shows that S(ρE|0) =
S(ρE|1) = h(εz), where h is binary entropy. For the six-state
protocol, all the error rates are measured, and equation (9) can
be rewritten as

IE = εzh

(
1 + (εx − εy)/εz

2

)
+ (1 − εz)

× h

(
1 − (εx + εy + εz)/2

1 − εz

)
. (10)

Now we calculate the evolution of the transmission state over
the non-Markovian depolarizing channel with coloured noise.
Having derived the Kraus operators of the depolarizing channel
with coloured noise, the evolution of the state ρAB with the
second qubit interacting with environment can be written as

Nt (ρAB) =
∑

k

I(A) ⊗ A(B)

k ρABA(B)†
k ⊗ I(A)†. (11)

For the case of the non-Markovian depolarizing channel with
coloured noise, the error rates can be calculated as

εx(ν) = 1
2 [1 − 	1(ν)],

εy(ν) = 1
2 [1 − 	2(ν)],

εz(ν) = 1
2 [1 − 	3(ν)], (12)

where 	i(ν) = e−ν[cos(μiν) + sin(μiν))/μi]. Now we
consider the dynamics of the secret key rates for the non-
Markovian case of state evolution. Under the assumption of
depolarizing channels, i.e. εx(ν) = εy(ν) = εz(ν) = Q(ν);
hence a1 = a2 = a3, the secret key rates for the non-Markovian
case can be derived as

rN (ν) = 1 − Q(ν) − h[Q(ν)] − [1 − Q(ν)]

× h

[
1 − 3Q(ν)/2

1 − Q(ν)

]
, (13)

while for the case of the Markovian depolarizing channel with
Gaussian white noise, 	i(ν) in error rates should be valued as
e−γit , and hence, Q(t) = 1

2 [1−e−γit]. The secret key rate for the
case of the Markovian channel is denoted as rM(t). It should
be pointed out that the secret key rate here is derived under

3
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Figure 1. The comparison of the dynamics of secret key rates of the six-state protocol over the non-Markovian and Markovian depolarizing
quantum channels under the conditions (a) τ = 1, |a1| = |a2| = |a3| = 0.3 and (b) τ = 1, |a1| = |a2| = |a3| = 0.5. The blue solid and red
dashed curves correspond, respectively, to the secure secret key rate in the case of non-Markovian and Markovian depolarizing channels.

Figure 2. The comparison of the dynamics of secret key rates of the six-state protocol over the non-Markovian and Markovian depolarizing
quantum channels under the conditions (a) τ = 1, |a1| = |a2| = |a3| = 0.2 and (b) τ = 1, |a1| = |a2| = |a3| = |a∗|. The blue solid and red
dashed curves correspond, respectively, to the secure secret key rate in the case of the non-Markovian and Markovian depolarizing channels.

the assumption of one-way post-processing, no pre-processing
and perfect error correction.

In what follows, we check whether the non-Markovian
quantum channel can exhibit higher security of transmission
of classical information under the same conditions. In figure 1,
we plot the dynamics of the secret key rates for the cases of non-
Markovian and Markovian depolarizing quantum channels
under the same conditions for some different parameters |ai|.
It can be seen that the secure secret key rate for the non-
Markovian case is larger than the Markovian case. Also,
the difference between the two cases is much clearer for
the more noisy channel, since the secure secret key rate for the
Markovian channel is more sensitive to the increase in noise.

However, when the coupling strength of the system with the
external system, which can be measured by the parameters
|ai|, becomes small, the secure secret key rate for the non-
Markovian case will not always be larger than the Markovian
case. By setting τ = 1, we find rN (ν) � rM(t) always exists for
secure communication in the regime of 0.2282 � |ai| � |a∗|,
where |a∗| =

√
[(π/ ln 3)2 + 1]/32, is the upper bound to keep

the linear map Nt completely positive for all times. Figure 2
presents the case that the secure secret key rate for the
Markovian depolarizing channel may be larger than the non-
Markovian one for some time when |ai| � |a∗|.

It should be mentioned that the time parameter t denotes
the duration of the processing of the quantum channel. Thus,

4
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Figure 3. The comparison of the dynamics of QBER for the six-state protocol over the non-Markovian and Markovian depolarizing
quantum channels under the conditions (a) τ = 1, |a1| = |a2| = |a3| = 0.2 and (b) τ = 1, |a1| = |a2| = |a3| = |a∗|. The blue solid and red
dashed curves correspond, respectively, to the QBER in the case of the non-Markovian and Markovian depolarizing channels.

Figure 4. The comparison of the dynamics of (a) secret key rate, (b) QBER, for the six-state protocol over the non-Markovian and
Markovian depolarizing quantum channels under the conditions τ = 1, |a1| = |a2| = 0.2, |a3| = 5. The blue solid and red dashed curves
correspond, respectively, to the QBER in the case of the non-Markovian and Markovian depolarizing channels.

to guarantee the absolutely secure communication, one should
limit the processing time of the quantum channel. Actually, the
control of the processing time corresponds to the restriction of
the QBER, and the unconditional security bounds of the QBER
for the non-Markovian and Markovian depolarizing channels
are equal to 12.61%. However, the dynamics of the QBER
for the non-Markovian and Markovian depolarizing channels
are different. Correspondingly, we find that the QBER for the
Markovian case is always larger than the non-Markovian case
under the same conditions in the regime 0.2282 � |ai| � |a∗|
when setting τ = 1. Figure 3 shows the dynamics of the QBER
for two different parameters |ai|.

Now we extend to the generalized depolarizing channel.
Assuming the coupling strengths of the system with the

external system in three directions are different, i.e. ai for
i = 1, 2, 3 are not equal, the restriction |ai| � |a∗| to keep
Nt completely positive for all times can be broken. We find
that the secret key rate will fluctuate near the secure point
along time when the coupling strength of the system with the
environment is high enough. This effect originates from the
convergent oscillation of the QBER in the case of the non-
Markovian depolarizing channel, which has not been found in
the case of the Markovian channel. Figure 4 shows this effect
when setting a high coupling strength in one direction. Since
the secret key rate is positive in only some ranges of time,
one application is that the legitimate parties can guarantee
security communication by controlling the processing time of
the non-Markovian quantum channel. It should be noted that

5
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the non-Markovian effects of the constructed quantum channel
act along the quantum signals passing through the quantum
channel. Moreover, it can be seen from the physical model
that the former transmission of the quantum state will not
affect the next transmission, i.e. the correlations between the
subsequent quantum signals do not exist in this model.

Our results for the non-Markovian channel have shown
something very different from the Markovian case. The
non-Markovian channel has a better performance than the
Markovian one to resist the leakage of information with
the increasing of noise. Actually, the non-Markovian
effects can be useful to enhance the security of quantum
communication. This advantage originates from the small
period of correlation time between the system and environment
of the non-Markovian channel, which leads to a smaller QBER
in transmission than the Markovian channel. Therefore, we can
combine the application of the non-Markovian and Markovian
quantum channel to achieve optimally secure QKD.

4. Summary and conclusions

We have investigated the dynamics of the secret key rate of the
discrete-variable QKD protocol over the quantum channel with
non-Markovian effects. In particular, we have introduced the
physical model of the non-Markovian depolarizing channel
with coloured noise, and calculated the secret key rate for
the six-state protocol over non-Markovian and Markovian
quantum channels under the same conditions. Moreover, we
numerically compare the performances of the information
transmissions over these two types of quantum channels. We
find that the secure secret key rate will always be larger for non-
Markovian channels than Markovian ones when the coupling
strength of the system with the environment is strong enough.
In particular, we obtain the lower bound of the coupling
strength ai when the parameter τ is specified as τ = 1. It
should be mentioned that we focus on the study of the value of
the secure secret key rate as the function of processing time of
the quantum channel. In practice, the transmission distance for
secure QKD is also an important parameter, which is directly
related to the transmission speeds of the quantum states over
the Markovian and non-Markovian channels. However, the
secure transmission distances over the Markovian and non-
Markovian channels are out of our discussions.

Since the upper bounds of tolerable QBER for secure
QKD are equal over the non-Markovian and Markovian
depolarizing channels, we demonstrate that the better
performance of the non-Markovian depolarizing quantum
channel for the six-state protocol originates from the different
dynamics of QBER. Furthermore, we consider the generalized
non-Markovian depolarizing channel and show that the secret
key rate will fluctuate near the secure point when the
coupling strength of the system with the environment is high.
This indicates that the coloured noise in the non-Markovian
quantum channels can enhance the security of communication.
The results demonstrate that the non-Markovian effects of the
transmission channel can have a positive impact on the security
of discrete-variable QKD.
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