
IOP PUBLISHING JOURNAL OF PHYSICS B: ATOMIC, MOLECULAR AND OPTICAL PHYSICS

J. Phys. B: At. Mol. Opt. Phys. 41 (2008) 215503 (7pp) doi:10.1088/0953-4075/41/21/215503

Teleportation of continuous variable
multimode Greeberger–Horne–Zeilinger
entangled states

Guangqiang He, Jingtao Zhang and Guihua Zeng

State Key Lab of Advanced Optical Communication Systems and Networks, Department of Electronic
Engineering, Shanghai Jiaotong University, Shanghai 200240, People’s Republic of China

E-mail: gqhe@sjtu.edu.cn

Received 29 May 2008, in final form 17 August 2008
Published 15 October 2008
Online at stacks.iop.org/JPhysB/41/215503

Abstract

Quantum teleportation protocols of continuous variable (CV) Greeberger–Horne–Zeilinger
(GHZ) and Einstein–Podolsky–Rosen (EPR) entangled states are proposed, and are
generalized to teleportation of arbitrary multimode GHZ entangled states described by Van
Loock and Braunstein (2000 Phys. Rev. Lett. 84 3482). Each mode of a multimode entangled
state is teleported using a CV EPR entangled pair and classical communication. The analytical
expression of fidelity for the multimode Gaussian states which evaluates the teleportation
quality is presented. The analytical results show that the fidelity is a function of both the
squeezing parameter r, which characterizes the multimode entangled state to be teleported, and
the channel parameter p, which characterizes the EPR pairs shared by Alice and Bob. The
fidelity increases with increasing p, but decreases with increasing r, i.e., it is more difficult to
teleport the more perfect multimode entangled states. The entanglement degree of the
teleported multimode entangled states increases with increasing both r and p. In addition, the
fact is proved that our teleportation protocol of EPR entangled states using parallel EPR pairs
as quantum channels is the best case of the protocol using four-mode entangled states
(Adhikari et al 2008 Phys. Rev. A 77 012337).

1. Introduction

Quantum teleportation is the disembodied transmission of an
unknown quantum state from the sender to receiver using both
the quantum correlation called entanglement and classical
communication [1]. It has been considered as one of the
fundamental quantum operations in quantum computation and
quantum information [2, 3]. Quantum computation with
cluster states is a typical example [4]. Since Bennett et al
proposed quantum teleportation which transports an unknown
state of any discrete variable (DV) quantum system [1], many
theoretical and experimental investigations of DV quantum
teleportation were carried out [5–7]. Later, the original
DV quantum teleportation was generalized to the continuous
variable (CV) domain [8–10] using EPR entangled states
[11]. The CV quantum teleportation, quantum teleportation of
optical coherent states, was first demonstrated experimentally
by Furusawa et al [12] using squeezed state entanglement.
An experimental demonstration of teleportation of a squeezed

thermal state was given in [13]. CV entanglement swapping
protocols were implemented [14, 15]. The above CV
schemes are teleportation protocols of Gaussian states. The
CV quantum teleportation using non-Gaussian states of the
radiation field as entangled resources was investigated by
Dell’Anno et al [16]. The above schemes are about the
teleportation of a single electromagnetic field; in fact the
teleportation of a CV composite system, such as CV GHZ
entangled states, is very important for quantum information
processing [6]. As a similar scheme for teleportation of a two-
qubit entangled state [7], the teleportation protocol of two-
mode squeezed states using the four-mode entangled state was
proposed by Adhikari et al [17]. But the experimental setup
of Adhikari’s scheme involving the four-mode entangled state
is complex and is difficult to implement, and its analytical
expression of fidelity has the maximal value 0.38 which is
incomparable with the fidelity definition [18] with the maximal
value 1. So designing simple teleportation protocol of CV EPR
entangled states and presenting its proper fidelity expression
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Figure 1. Schematic representation of quantum teleportation of CV GHZ entangled states. BS: beam splitter, D: displacement operator. The
Arabic numbers denote the modes. The transmission parameter η of all beam splitters except BS1 is 0.5.

are significant. In addition, to the best of our knowledge, the
teleportation protocol of the CV GHZ entangled state has not
been proposed in the literature.

The purpose of this paper is to present a teleportation
protocol of an unknown CV GHZ entangled state from Alice
to Bob, and to analyze the teleportation quality of our protocol
by calculating the fidelity for multimode Gaussian states.
Our protocol uses three pairs of CV EPR entangled states
as quantum channel. In addition, the teleportation protocol
of CV EPR entangled states is designed using two pairs of
EPR entangled states, which is more easily prepared than the
four-mode entangled state [17], and the explicit expression of
our protocol’s fidelity comparable with the fidelity definition
[18] is given. Finally, we generalize the teleportation of the
CV GHZ entangled states to that of arbitrary multimode GHZ
entangled states generated by combining the squeezed states
on beam splitters [19], and present the analytical expression
of the fidelity in terms of both the squeezing parameter r and
the channel parameter p.

This paper is organized as follows. In section 2,
the teleportation protocol of CV GHZ entangled states is
described. In section 3, the analytical expression of fidelity
in terms of both r and p is given in order to evaluate the
teleportation quality. In section 4, the teleportation protocol
of CV EPR entangled states is proposed, and is compared with
the scheme by Adhikari et al [17]. In section 5, the general
teleportation of arbitrary multimode GHZ entangled states [19]

is proposed and the analytical expression of fidelity is given.
Finally, conclusions are drawn in section 6.

2. Teleportation protocol of CV three-mode GHZ
entangled states

First, a third independent party, usually called Victor, prepares
three pairs of CV EPR entangled states, and distributes those
to the communication parties, Alice and Bob, as quantum
channels. Then Alice teleports each of three modes in an
unknown GHZ entangled state, which is supplied by Victor to
Bob using a shared CV EPR pair and classical communication.
The quantum teleportation protocol of CV GHZ entangled
states may be described generally in the following steps (see
figure 1).

Step 1: Victor prepares the CV GHZ entangled state
[19] to be teleported. Victor first combines the ‘position’
quadrature (X = â + â†) squeezed mode â1 with the
‘momentum’ quadrature

(
P = 1

i (â − â†)
)

squeezed mode â4

by beam splitter BS1 with the transmission parameter η = 1
3 ,

producing the modes â2 and â3. Then Victor combines mode
â3 with the ‘position’ quadrature squeezed mode â21 by beam
splitter BS6 to produce the modes â19 and â20. Here three
modes â2, â19 and â20 are in the GHZ entangled state that
Alice wants to teleport to Bob.

Step 2: Victor prepares three pairs of EPR entangled states
as quantum channels for quantum teleportation of the GHZ
entangled state. Victor prepares the EPR entangled modes,
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â7 and â8, by combining the X squeezed mode â10 and the
P squeezed mode â9 on the beam splitter BS3. In a similar
way, the entangled pairs â14, â15 and â24, â25 are prepared by
Victor. Victor sends modes â7, â14, â24 to Alice, and sends
modes â8, â15, â25 to Bob.

Step 3: Alice teleports modes â2, â19 and â20 using module
1, module 2 and module 3 respectively. Here we only describe
the teleportation process of â2 (module 1). The teleportation
of modes â19 and â20 can be described in a similar way. Alice
combines â2 with one arm (â7) of EPR1 pair by BS2, obtaining
modes â5 and â6. Alice first measures X5 and P6 by the
homodyne measurement devices, then gives the measurement
results to Bob by classical communication. Bob amplifies
Alice’s results with the gain parameters gx = gp = √

2, and
applies the displacement operator D(

√
2X5 + i

√
2P6) on the

other arm (â8) of EPR1 pair, obtaining mode â11. Mode â11 is
the teleported one of â2.

Step 4: Alice can teleport modes â19 and â20 to Bob by
module 2 and module 3 respectively in a similar way, obtaining
teleported ones â18 and â28. Obviously, the above protocol
can be easily generalized to that of arbitrary multimode GHZ
entangled states.

Step 5: the fidelity between the original GHZ entangled
state and the teleported one is calculated in order to evaluate
the transmission performance of the teleportation process.

3. Teleportation criterion and fidelity for multimode
Gaussian states

In order to estimate the ‘quality’ of the teleportation protocol,
the fidelity determining the overlap between the input state
and the output state is adopted. In this section, we first give
the calculation formula of fidelity for multimode Gaussian
states, then calculate the covariance matrices of the input state
and the output state respectively, finally giving the analytical
expression of fidelity in terms of both the squeezing parameter
r of the GHZ state and quantum channel parameter p.

3.1. Fidelity for multimode Gaussian states

Definition. The quantum fidelity was first defined by Jozsa,
based on Uhlmann’s transition probability [20]. Given two
quantum states ρ1 and ρ2, the fidelity is given [18, 21] by

F(ρ1, ρ2) = [
Tr

√√
ρ1ρ2

√
ρ1

]2
, (1)

where ρ1 and ρ2 represent the density matrices of the input state
and the output state respectively, and F reaches its maximal
value 1 if and only if ρ1 = ρ2.

Calculation formula. The general formula for the fidelity of
multimode Gaussian states is as follows [18]:

F(ρ1, ρ2) =
√

L det �(O), (2)

where

L =
[

det
A1 + A2

2

]−1

,

� : A → A(I +
√

I + (JA)−2),

O = �(A1) − (�(A1) − iJ )[A2 + �(A1)

− (A2 − iJ )(�(A1) + A2)
−1(A2 + iJ )]−1(�(A1) + iJ ),

J =
(

0 I

−I 0

)
,

here A1 and A2 are the covariance matrices of the input state
and the output state respectively.

Although the fidelity can be theoretically calculated using
equation (2), it is hard to find a concrete expression of the
fidelity for multimode Gaussian states. Fortunately, it has
been proved [18] that when A1 represents a pure state we
can get �(A1) = A1 and (�(A1) − iJ )[A2 + �(A1) − (A2 −
iJ )(�(A1)+A2)

−1(A2 +iJ )]−1(�(A1)+iJ ) = 0, so O = A1.
Thus calculation formula (2) of the fidelity reduces to

F = 1√
det A1+A2

2

. (3)

It is obvious that the CV GHZ entangled state is a pure state,
so we can calculate the fidelity between input and output
by applying equation (3). Obviously, we first calculate the
covariance matrices A1 and A2 in order to calculate the fidelity.

3.2. The covariance matrices of the input state and the
output state

For our teleportation protocol, the input modes are â2, â19 and
â20, and the output modes are â11, â18 and â28. According
to equation (3), we must first calculate the matrices A1 and
A2 in order to obtain the fidelity. Here introducing the vector
of operators as A = (X1, . . . , Xn, P1, . . . , Pn)

T for a system
made of n bosons, the covariance matrix V is defined in the
following way:

Vkl = [V ]kl = 1
2 〈AkAl + AlAk〉 − 〈Ak〉〈Al〉. (4)

The CV GHZ entangled state [19] can be expressed as
follows in Heisenberg picture:

X2 =
√

1
3 erX

(0)
4 +

√
2
3 e−rX

(0)
1 , (5)

P2 =
√

1
3 e−rP

(0)
4 +

√
2
3 erP

(0)
1 , (6)

X19 =
√

1
2 e−rX

(0)
21 −

√
1
6 e−rX

(0)
1 +

√
1
3 erX

(0)
4 , (7)

P19 =
√

1
2 erP

(0)
21 −

√
1
6 erP

(0)
1 +

√
1
3 e−rP

(0)
4 , (8)

X20 = −
√

1
6 e−rX

(0)
1 +

√
1
3 erX

(0)
4 −

√
1
2 e−rX

(0)
21 , (9)

P20 = −
√

1
6 erP

(0)
1 +

√
1
3 e−rP

(0)
4 −

√
1
2 erP

(0)
21 , (10)

where
〈
�X

(0)
i

〉2 = 〈
�P

(0)
i

〉2 = 1, i = 1, 4, 21, i.e.,
∣∣ψ(0)

1

〉
,∣∣ψ(0)

4

〉
and

∣∣ψ(0)
21

〉
being vacuum states, r being squeezing

parameter of the GHZ state to be teleported. From equation (5)
to (10), we can find that X2 = X19 = X20, P2 + P19 + P20 = 0
when r → ∞, thus the modes â2, â19 and â20 are in the CV
GHZ entangled state.
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According to equations (4)–(10), the covariance matrix of
the input state A1 can be calculated as follows:

A1 =
(

A11 0
0 A22

)
, (11)

where

A11 =

⎛
⎜⎝

1
3 e2r + 2

3 e−2r 1
3 e2r − 1

3 e−2r 1
3 e2r − 1

3 e−2r

1
3 e2r − 1

3 e−2r 1
3 e2r + 2

3 e−2r 1
3 e2r − 1

3 e−2r

1
3 e2r − 1

3 e−2r 1
3 e2r − 1

3 e−2r 1
3 e2r + 2

3 e−2r

⎞
⎟⎠ ,

A22 =

⎛
⎜⎝

1
3 e−2r + 2

3 e2r 1
3 e−2r − 1

3 e2r 1
3 e−2r − 1

3 e2r

1
3 e−2r − 1

3 e2r 1
3 e−2r + 2

3 e2r 1
3 e−2r − 1

3 e2r

1
3 e−2r − 1

3 e2r 1
3 e−2r − 1

3 e2r 1
3 e−2r + 2

3 e2r

⎞
⎟⎠ .

By the standard calculation of teleportation of a single
mode, the output modes can be written as

X11 = X2 +
√

2 e−pX
(0)
10 , (12)

P11 = P2 −
√

2 e−pP
(0)
9 , (13)

X18 = X19 +
√

2 e−pX
(0)
17 , (14)

P18 = P19 −
√

2 e−pP
(0)
16 , (15)

X28 = X20 +
√

2 e−pX
(0)
27 , (16)

P28 = P20 −
√

2 e−pP
(0)
26 , (17)

where p is the squeezing parameter of the parallel EPR
pairs shared by Alice and Bob. Obviously, X11 = X18 =
X28, P11 + P18 + P28 = 0 when r → ∞ and p → ∞, which
means that the entanglement degree of the teleported ones
increases with increasing both r and p.

According to equations (12)–(17), the covariance matrix
A2 of output modes is obtained as

A2 = A1 + 2 e−2pI. (18)

Thus the covariance matrices of the input state and
the output state are obtained by equations (11) and (18)
respectively.

3.3. Fidelity of teleportation for CV GHZ entangled states

To check the teleportation ‘quality’, we calculate fidelity
according to equation (3). The analytical expression of
fidelity is obtained by substituting equations (11) and (18)
into equation (3),

F = 1√
R

, (19)

where R = (1 + e−2r−2p + e2r−2p + e−4p)3.
According to equation (19), here we numerically plot the

fidelity of teleportation in terms of both r and p in figure 2.
As we can see, the fidelity will generally increase with
increasing p, which means that the better quantum channel
(CV EPR entangled pair) provides the better teleportation
quality. This means that the fidelity is exactly equivalent
to the multipartite entanglement of N-mode symmetric states
[22, 23], here N parallel EPR entangled pairs, serving as
quantum channels. And the fidelity will decrease with
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Figure 2. Teleportation fidelity of the GHZ entangled state in terms
of p and r.
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Figure 3. The relationship of fidelity with the squeezed parameter r,
given p = 0, 1, 2, 3, 4.

increasing r, which indicates that it is more difficult to
teleport the better CV GHZ entangled states, i.e. there
is a trade-off between the fidelity and the entanglement
degree of the teleported CV GHZ entangled state which
is characterized by the squeezing parameter r. The above
facts are also well illustrated in figures 3 and 4. Therefore
the coherent state r = 0 is the best quantum signal once
the quantum channel is built, i.e., p is a fixed value. The
maximal value of fidelity is 1 when r = 0, p → ∞,
which means that the teleported mode is exactly the original
one when Alice teleports the coherent state using the
perfect quantum channel. According to equation (19),
the fidelity of the classical ‘teleportation’ is 1

8 = (
1
2

)3
with

r = 0, p = 0, this case corresponds to the cascaded operation
of three ‘classical’ teleportations of the coherent state with
fidelity F = 0.5 [12, 24, 25].

In the above protocol, three parallel EPR entangled states
serve as quantum channels. This is one of the quantum
channels suitable for teleportation of the CV GHZ entangled
state. One may find more quantum channels, for example
the multi-party entangled state, for teleportation of multimode
quantum states. But the following analysis shows that the other
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Figure 4. The relationship of fidelity with quantum channel
parameter p, given r = 0, 1, 2, 3, 4.

quantum channels may be equivalent to the quantum channel
using parallel EPR entangled states. If using parallel EPR
entangled states as a quantum channel, the above teleportation
protocol obviously can be easily generalized to teleportation
for arbitrary multimode GHZ entangled states since one can
teleport each mode by one EPR pair respectively.

4. Teleportation protocol of CV EPR
entangled states

If we set up the transmission parameter of BS1 as η = cos2 θ ,
omit module 3, and teleport mode â3 using module 2, then the
above protocol reduces to that of CV EPR entangled states.

The EPR entangled pair can be expressed in Heisenberg
representation as

X2 = cos θ erX
(0)
4 + sin θ e−rX

(0)
1 , (20)

P2 = cos θ e−rP
(0)
4 + sin θ erP

(0)
1 , (21)

X3 = − cos θ e−rX
(0)
1 + sin θ erX

(0)
4 , (22)

P3 = − cos θ erP
(0)
1 + sin θ e−rP

(0)
4 . (23)

Obviously, lim θ= π
4

r→∞
X2 = X3, lim θ= π

4
r→∞

P2 +P3 = 0, thus modes

â2 and â3 are the entangled modes.
According to equations (20)–(23), the covariance matrix

B1 of input modes can be calculated as

B1 =
(

B11 0
0 B22

)
, (24)

where

B11 =
(

cosh 2r + cos 2θ sinh 2r sin 2θ sinh 2r

sin 2θ sinh 2r cosh 2r − cos 2θ sinh 2r

)
,

B22 =
(

cosh 2r − cos 2θ sinh 2r −sin 2θ sinh 2r

−sin 2θ sinh 2r cosh 2r + cos 2θ sinh 2r

)
.

The modes â2 and â3 are teleported to Bob using module
1 and module 2, respectively, by the standard teleportation
process of a single electromagnetic field. The output modes
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Figure 5. Teleportation fidelity of the EPR entangled state in terms
of p and r.
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Figure 6. The relationship of fidelity with squeezed parameter r,
given p = 0, 1, 2, 3, 4.

are expressed as

X11 = X2 +
√

2 e−pX
(0)
10 , (25)

P11 = P2 −
√

2 e−pP
(0)
9 , (26)

X18 = X3 +
√

2 e−pX
(0)
17 , (27)

P18 = P3 −
√

2 e−pP
(0)
16 . (28)

According to equations (25)–(28), the covariance matrix
B2 of output modes is calculated as

B2 = B1 + 2 e−2pI. (29)

By substituting equations (24) and (29) into equation (3),
the fidelity is expressed as

F = 1

1 + e−2r−2p + e2r−2p + e−4p
. (30)

From equation (30), we find that the fidelity F is a
function of r and p, and is independent of θ , i.e., beam
splitter does not affect the fidelity. F in terms of r and p is
demonstrated in figures 5–7. As demonstrated in the figures,
the fidelity also increases with increasing p which characterizes
the multipartite entanglement, here being N pairs of EPR
entangled states. So the fidelity is equivalent to multipartite
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Figure 7. The relationship of fidelity with quantum channel
parameter p, given r = 0, 1, 2, 3, 4.

entanglement, and this fact is compatible with the results of
Adesso and Illuminati [22, 23]. And fidelity decreases with
increasing r. So there also exists the trade-off between the
teleportation quality and the entanglement degree of the CV
EPR entangled states which is characterized by the squeezing
parameter r.

In fact, Adhikari et al have investigated the teleportation
protocol of the two-mode squeezed state using four-party
entangled states as the quantum channel, and calculated the
fidelity [17]. According to Adhikari’s result, the relationship
between the covariance matrix of the input mode and that of
the output mode is as follows:

σout = σin + 2(c + ks)I, (31)

where c = cosh 2p, k = sin 2φ, s = sinh 2p, p is the
squeezing parameter of the quantum channel, φ is the
squeezing phase. Obviously when φ = −π

4 ,

σout = σin + 2 e−2pI, (32)

with the obtained fidelity reaching its maximal value.
Formula (31) with the optimal value φ = −π

4 is the same
as equation (29) of our proposed protocol. That is to
say, our protocol is the best case of Adhikari’s protocol
using four-mode entangled states with the same parameters
r, p. Comparing with Adhikari’s protocol using four-mode
entangled states, our protocol uses relatively fewer optical
devices, and is a better protocol more suitable for teleportation
of two-mode squeezed states.

In addition, the maximal fidelity value of Adhikari’s
protocol is 0.38, which is incompatible with the fidelity
definition [18, 21] with the maximal value 1. The reason is that
Adhikari calculates the fidelity for the multimode Gaussian
state using the fidelity formula for the single mode F =

1√
det[σin+σout]+δ−√

δ
, where δ = 4

(
det[σin] − 1

4

)(
det[σout] − 1

4

)
,

producing incompatible results.

5. Generalization to arbitrary multimode GHZ
entangled states

In this section, we generalize the above protocols
to teleportation of arbitrary multimode GHZ entangled

Gaussian states [19]. In this paper, the vector of
operators A = (X1, . . . , Xn, P1, . . . , Pn)

T is adopted.
By applying numbers of beam splitters N̂1···N =
B̂N−1N

(
π
4

)
B̂N−2N−1

(
cos−1 1√

3

) × · · · × B̂12
(

cos−1 1√
N

)
on

N-independent squeezed states with the covariance matrix
A0 = diag( e−2r1 , e2r2 , . . . , e2r1 , e−2r2 , . . .), one can get the
multimode GHZ entangled Gaussian states with the covariance
matrix A1 [19]. These N-mode GHZ entangled states
can be teleported by N parallel EPR pairs and classical
communication. The relationship between the covariance
matrix of the input multimode entangled states A1 and that
of the output ones A2 is as follows:

A2 = A1 + 2 e−2pI, (33)

where A1 = SA0S
T , S ∈ Sp(2N,R) is the symplectic operator

corresponding to N̂1···N in phase space [26, 27].
To calculate the fidelity, we first prove two important

properties of S: SST = ST S = I and det S = det ST = 1.
The derivation is as follows. Obviously S can be expressed as
follows:

S =
N∏

k=2

Bk, (34)

with

Bk =
(

Bkx
0

0 Bkp

)
,

Bkx
= Bkp

=
⎛
⎝IN−k 0 0

0 Q 0
0 0 Ik−2

⎞
⎠ ,

Q =
(

cos θ sin θ

sin θ −cos θ

)
,

where Im is an m-order identity matrix.
Obviously, QQT = QT Q = I, det Q = det QT = −1,

thus BkB
T
k = BT

k Bk = I, det Bk = det BT
k = 1, then

SST = ST S = I, det S = det ST = 1.

Using the properties of S, the fidelity of teleportation of
arbitrary GHZ multimode entangled states is easily given as
follows by substituting equation (33) into equation (3):

F = 1√
M

, (35)

where M = det A1+A2
2 = det(A1 + e−2pI ) = det[S(A0 +

e−2pI )ST ] = det(A0 + e−2pI ) = ∏N
k=1[( e−2rk + e−2p)( e2rk +

e−2p)]
When r = rk, k = 1, . . . , N , equation (35) reduces to

F = 1√
[( e−2r + e−2p)( e2r + e−2p)]N

. (36)

From equation (36), we can find that teleportation of
N-mode GHZ entangled states generated by combining the
squeezed states with beam splitters is equivalent with the
cascaded teleportation of single mode squeezed states with
the fidelity Fsq = ( e−2r + e−2p)( e2r + e−2p)−

1
2 . Obviously,

the fidelity of GHZ states equation (19) and that of EPR
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states equation (30) are two special cases of equation (36)
with N = 3 and N = 2 respectively.

According to equation (36), F still increases with
increasing p for a certain r; this shows that the fidelity exactly
corresponds to multipartite entanglement characterized by p,
comparable with the results [22, 23]. While F decreases with
increasing r, this indicates again that there exists a trade-off
between the teleportation quality and the entanglement degree,
which is characterized by r, of the multimode entangled states
to be teleported. The above phenomena may be explained
intuitively as follows. The quantum channels improve as
the entanglement in the parallel EPR channels p grows, the
quantum signal will be transmitted from Alice to Bob more
precisely, and the resulting fidelity will increase. In another
aspect, the improved entanglement of the input entangled
states corresponds to the bigger squeezing parameter r; this
means that the input entangled states contain more energy;
it is obviously more difficult to transmit the more energy
once the quantum channel is fixed. For example, when the
quantum channel parameter p is a finite value, r is infinite for
perfect entanglement, and it contains infinite energy, so it is
difficult to perfectly transmit the infinite energy through such a
channel corresponding to finite energy; thus the fidelity is very
small.

6. Conclusion

In this paper, two kinds of quantum teleportation protocols of
CV multimode entangled states, CV EPR and GHZ entangled
states, are proposed, and are generalized to teleportation of
arbitrary multimode GHZ entangled Gaussian states generated
by combining the squeezed states on beam splitters. Each
mode of the multimode entangled state is teleported using
both an EPR entangled pair and classical communication.
The analytical expression of fidelity which evaluates the
teleportation quality of our protocol is presented. The
analytical results show that the fidelity is a function of both
the squeezing parameter r, which characterizes the multi-
mode GHZ entangled state to be teleported, and the channel
parameter p, which indicates the EPR pairs shared by Alice
and Bob. The fidelity increases with increasing p, but
decreases with increasing r, which indicates that there exists
a trade-off between fidelity (transmission performance) and
the entanglement degree, which is characterized by r, of the
multimode GHZ entangled states to be teleported. We have
proved that our protocol of EPR entangled states using parallel
CV EPR pairs is the optimal case of Adhikari’s scheme [17].
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