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（⼀一）基于连续变量纠缠对的量⼦子安全通信系统
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该⼯工作首次把量⼦子密钥分发

和量⼦子加密有机统⼀一，可有效抵
抗⾼高斯克隆攻击。被包括量⼦子光
学权威M. S. Zubairy在内的国内
外同⾏行引用20余次，受到了⼴广泛
关注，并获得第⼗十⼆二届全国量⼦子
光学⼤大会优秀论⽂文奖。
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（⼆二）连续变量量⼦子通信⽹网络研究
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数学模型

信号噪声

Lijie Ren, Guangqiang He and Guihua Zeng, 
Physical Review A, 78, 042302 (2008) 

基于连续量⼦子Graph纠缠态，采用矩阵理论建立
了⼀一种通用的量⼦子通信⽹网络数学模型，推导出进
⾏行量⼦子⽹网络通信的充分条件，可定量研究最优量
⼦子路由问题。推导出量⼦子信号以及量⼦子信号噪声
解析表达式。并采用Matlab语⾔言设计了相应程序
快速分析各种量⼦子⽹网络的性能。

（三） 基于Graph态量⼦子通信⽹网络



（四）基于连续变量Graph态的量⼦子密码⽹网络协议
QIAN, SHEN, HE, AND ZENG PHYSICAL REVIEW A 86, 052333 (2012)

B. Further discussion about step (i)

The first step in our protocol is disconnection, which is used
to extract a core graph from an arbitrary graph in case the graph
cannot be used to implement QKD. For a QKD-supporting
graph, its quality can be evaluated by Eq. (13). The less the
extra noise, the better the communication quality (this will
be shown in the next section). When the graph states cannot
implement QKD directly, different ways of disconnection may
lead to different qualities. Here, we present a basic way to
generate the optimal core graph which leads to the smallest
noise:

(a) Polish. The first stage of disconnection is a series of
operations we call “polish.” This operation is based on the
fact that for any vertex (except Alice and Bob) with only
one neighbor, its neighbor should not be measured unless
we disconnect the vertex from the graph. This can be easily
proven: Assume a vertex like this has a index of i. Then
its neighbor contains the information of x̂i , which cannot be
eliminated through linear combination since this vertex only
has one neighbor. The detailed operation of polish can be
described as follows:

(1) Find a vertex (except Alice and Bob) with only a
neighbor and disconnect it.

(2) Once such vertex is disconnected, we simply trace back
to its only neighbor and do the disconnection operation again
if it also needs to be “polished off.”

The polish operation will not stop unless a vertex has more
than one neighbor. This operation can reduce the dimension
of adjacent matrix G and thus to some extent reduce the time
complexity O of the subsequent traverse step (ii). Figure 1
shows a simple example of polish.

(b) Traverse. This part is more of an algorithmic problem.
“Traverse” mean that Eqs. (11) are checked for all possible
subgraphs. Here we simply traverse the whole graph and find
all possible ways to extract a core graph according to Eq. (12).
Among all of these graphs, we select the one with the smallest
extra noise.

Note that when the adjacent matrix has a huge dimension,
traversing the entire graph can be extremely time consuming.
We can reduce the time complexity O at the cost of noise. In
such cases, we may have to find a good way rather than the best
way to extract a core graph, e.g., finding the shortest path by
using the Dijkstra algorithm [22]. This is because a graph with
no branches can be proven to be always QKD supporting. This
is easy to prove considering the unique form of single-pass
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FIG. 1. (Color online) An example of “polish.”
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FIG. 2. (Color online) Cellular cryptography network.
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If there are an odd number of modes (N is a odd number)
on this single-pass graph, then condition (I) in Eq. (12) will
always be satisfied; if N is a even number, then condition (II)
in Eq. (12) will always be satisfied.

C. Application example: A QKD network

In this example, we use our QKD protocol and correspond-
ing criteria to present a “cellular cryptography network.” This
scheme enables two arbitrary clients to share quantum keys.
Unlike the traditional cellular mobile network, we choose
quadrilateral rather than hexagonal as the shape of the cells.
That is because a network with quadrilateral cells requires less
disconnection operations compare with hexagonal cells.

In Fig. 2, there are 3 × 2 cells and every cell has a “base
station” which connects to its neighbor cell. If a client (Alice)
in the picture wants to communicate with another client (Bob),
then the u and v can be given as (with all nonzero gij set to
unity)

u = p̂
g
2 − p̂

g
6 , v = p̂

g
7 − p̂

g
3 .

Also, by using the criteria, we can get k1 = 1, k2 = −1, and
an inverse Fourier transform is needed. In this case, p̂

g
4 and

p̂
g
5 are not used in constructing a direct entanglement between

Alice and Bob, which is because of the assumption that all
nonzero gij is set to unity. In practice, it is hard to make every
nonzero gij equal to 1. Thus, in most cases, every vertex in the
network needs to be measured.

IV. SECURITY ANALYSIS

A. Principle of general individual attack strategy

In our protocol, there is no direct transmission between
Alice and Bob (except for the case in which they are
neighbors). Thus, it would be impossible for Eve to eavesdrop
after the graph state is prepared. To acquire information, the
only way for Eve to eavesdrop is during the generation of
the graph state, or, more specifically, during the time when
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FIG. 3. Equivalent system diagram in the presence of Eve.

the QND coupled state is transmitted back to Bob. We now
explain this strategy in detail.

The entangling cloner is a system that allows Eve to guess
the results of Bob’s measurement [23]. This kind of system can
be described as a cloner creating two entangled outputs, with
Eve keeping one of them and sending the other one to Bob.
In the following analysis, we assume this system consists of
a beam splitter and an Einstein-Podolsky-Rosen (EPR) source
(see Fig. 4).

Here we consider security against individual attacks only.
The whole discussion, including notations, parallels the one
done in Ref. [23]. Suppose that Eve employs the entangling
cloner to eavesdrop on the channel and that she can perfectly
eavesdrop all of the classical information, including Alice’s
and Bob’s position in graph state, G, u, and v. In this case,
if Eve is to acquire information rather than obstruct the
communication, the best occasion for her to eavesdrop shall
be the transmission of Bob’s final state during the generation
of the graph state.

Let us suppose that the other modes in the graph, except
Bob, and the measuring apparatus of all of these modes are
hidden in a black box. The only output of this box is beam
(X̂B,P̂B), which is the QND coupled beam heading to Bob.
The whole system is equivalent to Fig. 3.

By using the entangling cloner, Eve takes in the output of
the black box as an input and produces two entangled outputs:
(X̂E,P̂E) and (X̂

′

B,P̂
′

B). The former is kept by Eve, and the
latter is sent to Bob through a perfect line.

B. Mutual information of reverse reconciliation (RR)

After the displacement operation and inverse Fourier
transform (if needed), Alice and Bob are entangled. The
measurement of a quadrature of her own state gives Alice
information on the same quadrature of Bob’s.

According to the Csiszar-Korner formula [24,25], the final
key rate should be expressed as

!I = γ IAB − IBE, (16)

where γ represents the efficiency of the reconciliation.
Considering Eq. (15), since x̂

g
N and p̂

g
N are Gaussian

variables, we have
〈
x̂

g2
N

〉
= VxN0,

〈
p̂

g2
N

〉
= VpN0, (17)

where Vx = e2ri , Vp =
∑N

i=1 g2
iNe2ri . N0 is the vacuum vari-

ance. Also, the extra noise is the linear combination of
pi = p

(0)
i e−2ri , i = 1 · · · N [shown in Eq. (14)]. With vacuum

variance set to unity, we get

(I)
〈
N̂2

XA

〉
=

N−1∑

i=2

α2
i e

−2ri ,
〈
N̂2

XB

〉
= 0,

〈
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〉
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k2
2

e−2r1 +
N−1∑

i=2

β2
i e

−2ri ,
〈
N̂PB

〉
= e−2rN .

(18)

(II)
〈
N̂2

XA

〉
= 1

k2
1

e−2r1N0 +
N−1∑

i=2

α2
i e

−2ri ,
〈
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XB

〉
= 0,

〈
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PA

〉
=
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β2
i e−2ri ,

〈
N̂2
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〉
= e−2rN .

To simplify the discussion, let us assume all squeezing
parameters ri are the same. According to [23,26,27], the con-
ditional variance VXB |XA

of X̂B knowing XA (the measurement
result of X̂A) represents the remaining uncertainty on X̂B

after measurement of X̂A giving the estimate k1XA of X̂B and
equal to

VXB |XA
=

〈
X̂2

B

〉
− |⟨k1XAX̂B⟩|

k2
1X

2
A

. (19)

When there is no extra noise [shown in Eq. (13)], we have
the uncertainty principle

VXB |XA

〈
P̂ 2

B

〉
! N2

0 = 1. (20)

Considering the increase of uncertainty caused by the extra
noise [shown in Eq. (15)] and the fact that the squeezed state
minimizes inequality, we obtain

VXB |XA
= 1

Vp

+
〈
N̂2

XA

〉
. (21)

By measuring her state (X̂A) and multiplying the result (XA)
with k1, Alice deduces k1XA. Bob’s state (x̂g

N ,p̂
g
N + N̂PB

) is
then projected onto a position-squeezed state of squeezing
parameter sx = VXB |XA

N0
= VXB |XA

centered on (k1XA,0).
Similarly, if Alice measures the quadrature P̂A, then

Bob’s state is projected onto a momentum-squeezed state
of squeezing parameter sp = VPB |PA

= 1
Vx

+ ⟨N̂2
PA

⟩ + ⟨N̂2
PB

⟩
centered on (k2PA,0).

To eavesdrop a reverse reconciliation scheme, Eve needs
to guess Bob’s measurement result. As we presented in the
previous discussion, (X̂B,P̂B) is the input of the cloner, and
(X̂

′

B,P̂
′

B), (X̂E,P̂E) are its two outputs. Here, we assume the
conditional variances VXB |XE

and VPB |PE
can be minimized by

the best cloner.
Since Eve uses the best cloner, the channel can be

described by

X̂
′

B =
√

TX(X̂B + δX̂B ), P̂
′

B =
√

TP (P̂B + δP̂B), (22)

where
〈
δX̂2

B

〉
= χXN0 = χX,

〈
δP̂ 2

B

〉
= χP N0 = χP . (23)

Here, TX and TP represent the transmission rates for each
quadrature (TX for X and TP for P ) of the beam splitter
that Eve uses to split apart the light. χX = 1

TX
− 1 + ϵ and

χP = 1
TP

− 1 + ϵ means the additive noise of each quadrature,
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采用PSA和PIA提⾼高CVQKD的性能，同时也可以采用非⾼高斯操作提⾼高CVQKD的性能。

（六）采用PSA和PIA提⾼高CVQKD的性能


