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Quantum frequency combs (QFCs) are versatile resources for multi-mode entanglement, such as cluster states, crucial for quantum
communication and computation. On-chip whispering gallery mode resonators (WGMRs) can generate these states at ultra-low
threshold power. This work demonstrates the simultaneous generation of multiple QFCs using a single on-chip silicon nitride WGMR
across distinct modal families. It presents a micro-ring resonator with a radius of 240 µm, capable of supporting four modal families
within the 130 to 260 THz frequency range for consistency regulation. The results indicate that, by carefully designing the structure
of silicon nitride WGMRs, it is possible to generate quantum entangled frequency combs across distinct modal families simultaneously
using monochromatic pump light. It is achieved by modulating the pump mode profiles with a spatial light modulator (SLM) or an
on-chip inverse-designed mode converter. This approach offers a simple and low-cost method to achieve higher-density entanglement
integration on-chip.

1 Introduction

Optical quantum states featuring multimode entanglement within QFCs are pivotal in advancing quantum
information science. Quantum Kerr optical frequency combs have demonstrated significant potential in
quantum communication and computation, providing important tools for advancing these fields.[1, 2, 3]

While their contribution to a deeper understanding of quantum mechanics is still an active area of research,
recent works have highlighted their promising applications in generating time-bin entangled circuits,[4, 5]

photon pair sources,[6, 7] quadrature-squeezed vacuum states,[8, 9, 10, 11, 12] heralded single photons,[13] graph
states,[14, 15, 16] and multi-user quantum networks.[17, 18]

The evolution from discrete, bulky optical setups to on-chip QFCs underscores a monumental shift, courtesy
of advancements in integrated photonics. These on-chip systems not only overcome the maneuverability,
integration, and scalability challenges posed by traditional free-space OPOs but also leverage the enhanced
mode confinement and nonlinearity inherent in integrated micro-resonators. Recent studies focusing on the
high degree of squeezing and exploration of quantum processes in soliton microcombs within nanophotonic
devices have highlighted the substantial potential of these platforms.[19, 20]

Silicon nitride (Si3N4) stands out for its compatibility with CMOS technology, offering low loss and a
broad transparent window, key attributes for the deployment in quantum applications.[21] However, the
quantum potential of silicon nitride WGMRs has been somewhat underexplored, particularly in terms of
structural modeling and simulation.[22, 23, 24, 25] Integration with advanced CMOS technology facilitates the
precise design of WGMR parameters such as coupling, loss rate, and dispersion through cavity structure
engineering. Moreover, incorporating a thermoelectric heater during the CMOS fabrication process allows
for fine-tuning each QFC mode by adjusting the WGMR structure and ambient temperature.[26, 27, 28] The
bipartite entanglement criterion provides a method to quantitatively measure the degree of entanglement,
offering valuable insights into how structural modifications and temperature adjustments can influence
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the entanglement performance of QFCs and can work as efficient feedback for structure redesign. This
approach not only enriches the understanding of entanglement within integrated photonic systems but also
paves the way for optimized quantum communication and computing technologies.[29]

Traditional methods use pump lasers to pump fundamental modes (TE00/TM00) of on-chip waveguides.[30]

However, WGMRs function as crystal systems, featuring what we call modal families. Each modal family
can be seen as independent of one another, with no interference between them, assuming no cross modal
families interactions. Modal families provide an excellent multiplex channel to support parallel quan-
tum information, akin to Space Division Multiplexing (SDM) in multi-core optical fiber communication,
recognized as the most efficient method to broaden capabilities.
In our work, we utilize SDM technology in the generation of quantum entangled frequency combs, enabling
high-density entanglement generation on a single integrated Si3N4 WGMR. In our method, dispersion and
coupling engineering of WGMRs are essential to realize multiple modal families and high entanglement
dimensions. Dispersion engineering involves both structural and material dispersion. The on-chip WGMR,
due to its easy fabrication properties, makes structural dispersion modulation highly convenient. We de-
signed a WGMR waveguide structure with a cross-section that is approximately rectangular trapezoidal,
with the add-through waveguide also having the same shape to support similar modal families. We im-
plement the OPO theory to establish the quantum dynamics of third-order nonlinear WGMRs, including
self-phase modulation (SPM), cross-phase modulation (XPM), and four-wave mixing (FWM).[31, 32, 33] This
allows for the extraction of resonator structure parameters and supports thermal adjustment. We success-
fully designed an on-chip WGMR with a radius of 240 µm that can support four modal families, three of
them can be used as multiplexing channels. By tuning the pump laser and using a SLM, we can generate
three bipartite entangled frequency combs with up to twelve channels (six pairs) in each modal family,
ideal for multi-channel quantum information networks. Furthermore, we can map the entanglement distri-
bution in each mode according to the bipartite entanglement criterion, motivating redesigns of the WGMR
structure. The simulation of entanglement distribution control may pave a new avenue for the field of QFC
design.
This article is organized as follows: Section 2 outlines the simulation model for Si3N4 WGMR and in-
troduces multi-modal family structure dispersion and WGMR-waveguide coupling engineering. Section
3 presents a theoretical model for third-order nonlinearity dynamics in the WGMR, including self-phase
modulation (SPM), cross-phase modulation (XPM), and four-wave mixing (FWM), which will make fur-
ther adjustments to the resonance formed by structural dispersion. The combination of these effects, called
phase-matching conditions, will determine if quantum frequency combs can be generated. In Section 4,
we discuss the quantum entanglement witness, clarifying whether entanglement exists in the generated
quantum frequency combs. Our calculations and simulation results are presented in Section 5. Finally, in
Section 6 and 7, we discuss and conclude our paper.

2 χ(3) Microring Cavity Design

Figure 1 (a) shows the general structure of the microcavity we designed. The on-chip microring cavity sys-
tem consists of a ring waveguide and a straight waveguide. The third-order nonlinearity of the waveguides
material induces a four-wave mixing effect in the input pump light (Ωp1, Ωp2), resulting in the creation of
signal (Ωs) and idler (Ωi) lights, with energy redistributed among different state modes. These processes
must follow the laws of conservation of energy and momentum:

Ωp1 + Ωp2 = Ωs + Ωi

kp1 + kp2 = ks + ki
. (1)

Figure 1 (a) shows a standard structure of a microring resonator on chip featuring an add-through coupling
configuration, relevant to the OPO theory. Our design uses Si3N4 as the third non-linearity material, with
the Si3N4 waveguides embedded in a SiO2 cladding. This cladding layer acts as a protective cover and allows
the integration of a micro-heater, closely attached to the resonator. The micro-heater facilitates the tuning
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2.1 Detuning, Dispersion, and Cavity Structure

and stabilization of resonance.[26, 27] This structure is not difficult to fabricate in today’s semiconductor
industry.
Figure 1 (a) ➁ shows the cross-sectional structure of the microring. The cross-section of the ring is
trapezoidal, defined by the height Wh, the width of the long side Ww, and the angle of the inclined side
θ. The trapezoidal encapsulated structure is filled with Si3N4 material, while the large outer area is filled
with SiO2 material. The parameters of the filled region are mainly controlled by three parameters: Ch, Cb,
and Cw. The parameter Cb represents the distance from the top plane of the Si3N4 waveguide to the top
surface of the SiO2 cladding, Ch represents the thickness of the entire SiO2 cladding, and Cw represents
the width of the entire cladding. The entire Si3N4 waveguide is encapsulated within SiO2. Cw should be
a large value, but considering the needs of finite element simulation, a relatively large value is chosen for
Cw in the actual simulation. Under the mode supported by the waveguide, the energy will hardly leak into
the SiO2.
The design of the straight waveguide is the same as that of the microring to ensure that both the microring
cavity and the straight waveguide support the same spatial mode. The cross-sectional side view of the
resonator’s architecture is depicted in Figure 1 (a) ➀, where the gap d is defined as the shortest straight-line
distance at half the height (h/2) between the two waveguides. As light propagates along the waveguides
in Figure 1 (a), effective mode area Aeff represents the effective cross-sectional area of the waveguide,[34]

Aeff =

(∫∫ +∞
−∞ |F (x, y)|2dxdy

)2
∫∫ +∞

−∞ |F (x, y)|4dxdy
, (2)

where F (x, y) is the mode distribution in Si3N4 and SiO2, assuming the mode distribution within the
resonator remains constant over time.
The geometry of the coupling region is crucial in determining the ring and straight waveguide coupling rate,
facilitating the extraction of the coupling rate, which describes the resonator’s input-output relationship.[31]

We focus on the fundamental TE00 mode as an example, resulting in a Lorentzian-shaped envelope for
cavity resonance (illustrated in Figure 2, shaded area). Due to the refractive index n(ω) of the material
being frequency-dependent, resonances do not appear evenly spaced in the spectrum. Adjusting cavity
variables such as detuning, dispersion, coupling, and loss rate can tune our system to different work points.

2.1 Detuning, Dispersion, and Cavity Structure

This section explores the properties of detuning and dispersion in relation to the cavity structure. The
relative mode number L (L ∈ Z) is introduced to define the state modes alongside the pump mode ω0

(L = 0). The resonance modes around ω0 can be described using a Taylor expansion:

ωL = ω0 +D1L+
D2

2
L2 + · · · = ω0 +

∞∑
n=1

Dn
Ln

n!
, (3)

with Dn = dnωL

dLn

∣∣
L=0

. Notably, the term D1

2π
denotes the comb’s free spectral range (FSR, fsr). The

coefficient D2 pertains to group velocity dispersion (GVD), with D2 > 0 signaling anomalous dispersion
and D2 < 0 indicating normal dispersion. For higher orders (n > 3), we simplify the model by setting
Dn = 0, thus the integrated dispersionDint = ωL−ω−D1L = D2

2
L2+D3

6
L3. Under appropriate microcavity

structure design, D2 ≫ D3, Dint closely approximates a quadratic polynomial near ω0 when L is not very
large, as shown in Figure 1 (b, c).
At the below-threshold region, where pump power is weak, we can neglect frequency shifts caused by the
pump power through nonlinear effects, called the “cold cavity”. The pump detuning is given by:

∆p = ω0 − Ω0. (4)

where ω0 is the resonance peak of the pump mode and Ω0 is the pump light frequency. The generated
QFC teeth mode detuning follows:

∆L = ωL − ΩL. (5)
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2.2 Coupling, Loss, and gap

For QFCs, the quantum noise is centered around ω0 ± nD1 , just like the classical field envelope, ∆L =
∆p +Dint = ∆p +

D2

2
L2 + D3

6
L3.

2.2 Coupling, Loss, and gap

This section delves into the interplay between the input-output parameters, specifically the coupling rate
(γ) and loss rate (µ) of the cavity, along with the intrinsic cavity parameters: gap (d) and quality factors
(Q). The ratio r = γ/µ serves as a measure of the relationship between coupling and intrinsic loss. A
value of r < 1 indicates under coupling, r > 1 signifies over coupling, and r = 1 denotes critical coupling.
The overall damping rate (Γ) is defined as the sum of the coupling and loss rates:

Γ = γ + µ. (6)

Γ approximates the full width at half maximum (FWHM) of the resonance, following the relation Γ = ω
Q
.

The quality factor is composed of the intrinsic quality factor (Q0 = ω
µ
) and the external quality factor

(Qex = ω
γ
). The total quality factor Q is given by:

1

Q
=

1

Q0

+
1

Qex

. (7)

2.3 Actual Simulation

Our simulation parameters are presented in Table 1. The radius of the microring cavity is designed to
be 240µm, with a FSR of approximately 100GHz. In the frequency range of 130THz to 260THz, the
microcavity supports a total of four spatial modes: TE00, TM00, TE10, and TM10. Their mode profiles are
shown in the right-hand figure of Figure 1 (a) ➁, where it can be seen that the energy of the optical field is
well confined within the waveguide structure. By simulating these four modes, with the nearest resonance
peak near 214.6THz as the zero-dispersion point for each modal family ω0, we can plot the integrated
dispersion (Dint) curve as shown in Figure 1 (b, c). For each modal family, the detailed parameters are
given in Table 2. As shown in Figure 1 (b), the integrated dispersion curve is not a constant line, so the
resonance peaks in the microcavity are not equally spaced. Our four modal families are all anomalous
dispersion around 214.6THz. D1, D2, D3, D4, and D5 are the first, second, third, fourth, and fifth order
dispersion coefficients. In Table 2, we can see D1 and D2 are much larger than the others, so the Dint

curve in Figure 1 (c) appears as a parabola when l is not very large. The FSR equals to D1

2π
, f0 and λ0 are

the frequency and wavelength of the zero-dispersion point. neff is the effective refractive index, and g0 is
the nonlinear coupling rate. The total quality factor Q, according to Wu’s thesis,[35] is set at 106 for TE00

and TM00, and 5× 105 for TE10 and TM10.
To simplify the pumping conditions in our design for achieving spatial multiplexing quantum entanglement
generation using WGMRs, we employ monochromatic pumping light to simultaneously pump all spatial
modes. To ensure that the pumping light is nearly resonant with the peaks of the all spatial modes,
we traverse all the resonance peaks, aiming to find as many overlapping resonance peaks as possible.
Near 214.6THz, we devised Figure 3, showing that the resonances of TE00, TE10 and TM10 are mostly
overlapped. We can tune our pump light around the light yellow area to examine the QFCs generation.
The key aspect of this design lies in ensuring the close matching of the pumping light’s frequency with
those of the three spatial modes, thereby achieving optimal excitation and laying a solid foundation for
simultaneous quantum entanglement generation via optical frequency comb preparation. We employed a
sophisticated technique involving the utilization of an SLM. Through precise manipulation facilitated by
the SLM, we could dynamically adjust the spatial modes of the pumping light. This dynamic adjustment
enabled us to tailor the pump beam to resonate effectively with all three spatial modes simultaneously.
Considering the intricate nature of our system, it was imperative to account for the unique characteristics
of each spatial mode. In our setup, we harnessed three distinct spatial modes: TE00, TE10, and TM10.
Each of these modes possesses its own resonant frequency and spatial distribution within the WGMR.
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In essence, the pumping light needed to be a composite of these three spatial modes, with each mode con-
tributing to the overall excitation process. This composite nature of the pumping light was aptly depicted
in Figure 4, illustrating the superposition of TE00, TE10, and TM10 modes. Crucially, the relative ampli-
tudes of these modes, depicted by proportionality coefficients in the figure, determined the contribution of
each mode to the overall pumping process.
By meticulously crafting the pumping light to encompass the superposition of these spatial modes, we
ensured comprehensive excitation coverage within the WGMR. This approach does not need to tune pump
frequency using electro-optic modulator or other pump source, only use SLM, realizing simultaneously
pumping all spatial modes.

3 χ(3) WGMRs Model Supporting Multiple Modal Families

3.1 Hamiltonian and Dynamics

A general WGMR without nonlinearity supporting multiple modal families can be modeled as a series of
resonance peaks of frequencies in distinct modal families. Such linear WGMRs has the following Hamilto-
nian:

Ĥ0 =
∑
i,j

ℏωi,j â
†
i,j âi,j, (8)

where ωi,j represents the resonances peak frequency of the j-th resonance in the i-th modal family, ℏ is the

reduced Planck constant, and âi,j and â†i,j are the annihilation and creation operators of j-th resonance
mode in the i-th modal family.
This Hamiltonian is usually called the “free Hamiltonian” because it does not describe any interaction
between modes. In Si3N4 WGMRs, mode interaction is introduced by the Kerr effect, enabling SPM,
XPM, spontaneous and stimulated FWM and Bragg scattering. These nonlinearities can be modeled as
an additional term in the free Hamiltonian:

Ĥint = −1

2

∑
i

ℏηi
∑

j1+j2=j3+j4

â†i,j1 â
†
i,j2
âi,j3 âi,j4 . (9)

The Kerr nonlinearity is a third-order nonlinear effect that describes the interaction between four electro-
magnetic modes. The nonlinear process must also satisfy the principle of energy conservation, so the cavity
modes involved in the Kerr nonlinearity are subject to the constraint j1 + j2 = j3 + j4. ηi corresponds to
the nonlinear coupling coefficient of the i-th modal family. In this paper, we assume that all third-order
nonlinear processes generated within the same modal family have the same nonlinear coupling coefficient.

Here, the lower bound estimate of the nonlinear coupling coefficient is ηi =
ℏω2

0cn2

n2
0Veff

[36], representing the

per photon frequency shift of the resonance due to the χ(3) nonlinearity. Here, c is the vacuum speed of
light, and n2 is the nonlinear index of Si3N4, which is associated with the refractive index n0. In our Si3N4

microresonator, n2 = 2.6× 10−19m2 W−1.[37] The effective mode volume Veff can be defined as:[38]

Veff =

∫
n2
0|F (x, y, z)|2 dV

∫
|F (x, y, z)|2 dV∫

n2
0|F (x, y, z)|4 dV

. (10)

When the WGMR resonator is a microring resonator, the upper bound estimate of Veff can be approxi-
mated by Veff ≈ Aeff · 2πR.[36]
The total Hamiltonian is then given by:

Ĥ = Ĥ0 + Ĥint, (11)

which is the combination of the free and interacting Hamiltonian. The process described by this Hamilto-
nian is relatively comprehensive, and considering the interactions of multiple modes makes it very challeng-
ing to study. To address this issue, we consider specific situations and reasonably neglect certain processes
to simplify the calculations.
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3.1 Hamiltonian and Dynamics

In this paper, we primarily focus on microcavity systems with below-threshold pumping, assuming there
is no cross modal families interaction. The new Hamiltonian can be written as a sum of the Hamiltonian
of distinct modal families:

Ĥint =
∑
i

Ĥi. (12)

Ĥi =− 1

2
ℏηiâ†i,pâ

†
i,pâi,pâi,p −

N∑
L

ℏηi[
1

2
(â†i,−Lâ

†
i,−Lâi,−Lâi,−L + â†i,+Lâ

†
i,+Lâi,+Lâi,+L)

+ 2(â†i,pâ
†
i,−Lâi,pâi,−L + â†i,pâ

†
i,+Lâi,pâi,+L + â†i,−Lâ

†
i,+Lâi,−Lâi,+L) + (â†i,−Lâ

†
i,+Lâi,pâi,p + â†i,pâ

†
i,pâi,−Lâi,+L)].

(13)
Here, the total mode number in each modal family is set to 2N + 1. Apart from the pump light mode,
we also consider N pairs of frequency modes near the pump light frequency. The first term corresponds
to the self-phase modulation of the i-th modal family pump light. The second term is the self-phase
modulation effect of the frequency components +L and −L. The third term is the cross-phase modulation
effect between the frequency components +L, −L and the pump light. The last term describes the process
of the pump light generating the frequency components +L and −L. In the above formulation of the
Hamiltonian, we have not considered the Bragg scattering effects and other four-wave mixing processes
that occur at above-threshold pumping condition. These approximations allow the +L and −L frequency
components to be considered as evolving together and not affected by other mode pairs, which is reasonable
for situations slightly above the threshold. Although we consider the quantum entangled optical frequency
combs to be below the threshold, it is also important to introduce above-threshold effects (SPM and XPM)
to determine the threshold value.
This comprehensive Hamiltonian framework underscores the intricate quantum dynamics at play within
the resonator, laying the groundwork for understanding and optimizing the generation of entangled photon
pairs through the pump-degenerate FWM process.
We can then employ the Heisenberg-Langevin formalism to model the dynamics of all interacting modes
within a resonator. A typical linear Heisenberg-Langevin equation has the following form:[39]

dâ

dt
= −Γâ− i∆â+

√
2γâin +

√
2µâloss, (14)

where the first term on the right is damping, describing the leakage of the electric field in the WGMR to
the environment, including the coupling waveguide and the bath. The second term describes the oscillation
of the electric field within the cavity, with ∆ = ω−Ω being the detuning of the pumping frequency Ω from
the pumping resonance frequency ω. The last two terms describe the transfer of the waveguide optical
field and the bath optical field into the cavity. The damping rate(total loss rate) Γ equals to the sum of
the external coupling rate γ and the intrinsic loss rate µ.
As previously explained, the +L and −Lmodes in each modal family can be considered to change only with
the pump light under below-threshold and slightly above-threshold pumping conditions. The evolution of
the pump, +L, and −L modes is governed by the Heisenberg-Langevin equations with nonlinear coupling
added to the linear one. The corresponding Heisenberg-Langevin equations for these modes are as follows:

dâi,p
dt

= iηi,p

[(
â†i,pâi,p + 2â†i,−Lâi,−L + 2â†i,+Lâi,+L

)
âi,p + 2â†i,pâi,−Lâi,+L

]
− Γiâi,p − i∆pâi,p

+
√

2γiâ
in
i,p +

√
2µiâ

loss
i,p ,

dâi,−L

dt
= iηi,−L

[(
2â†i,pâi,p + â†i,−Lâi,−L + 2â†i,+Lâi,+L

)
âi,−L + â2i,pâ

†
i,+L

]
− Γiâi,−L − i∆−Lâi,−L

+
√

2γiâ
in
i,−L +

√
2µiâ

loss
i,−L,

dâi,+L

dt
= iηi,+L

[(
2â†i,pâi,p + 2â†i,−Lâi,−L + â†i,+Lâi,+L

)
âi,+L + â2i,pâ

†
i,−L

]
− Γiâi,+L − i∆+Lâi,+L

+
√

2γiâ
in
i,+L +

√
2µiâ

loss
i,+L.

(15)

6



3.2 Steady-state Equations

Here, Γi represents the total loss rate in i-th modal family, which is a combination of the external coupling
rate γi and the intrinsic loss rate µi. The operators â

in
i,±L and âlossi,±L represent the incoming driving fields and

the fields lost from the resonator, respectively, with statistical properties reflecting vacuum fluctuations and
coherent pump inputs. In the following discussion, we will omit the spatial mode index i for convenience.

3.2 Steady-state Equations

The temporal evolution of cavity modes is governed by Equation (15). To find the solutions, we employ
the linearization method by expanding each field operator âj into its steady-state mean value αj and
fluctuation operator δâj, such that âj = αj + δâj. In the steady state, αj remains constant, so by setting
δâj = 0 and dαj/dt = 0, we can derive the Heisenberg-Langevin equations in the steady state. Under
these conditions, the inputs of the signal and idler, as well as the losses of the signal, idler, and pump, are
all in the vacuum state, implying αin

s = αin
i = αloss

j = 0.

For simplicity, we take the phase of the external pump as a reference. Therefore, we set αj = Aje
iθj ,

αin
p = Aineiθin , ϕ = θ−L + θ+L − 2θp, and ψ = θin − θp. We assume A−L = A+L = A and ∆+L = ∆−L = ∆.

The external pump power is defined as F =
√

2γη
ℏΩ0Γ3Pin, with A

in = F
√

Γ3

2γη
.[40, 41] Using these variables,

we derive the following equations:

A4
p = 1 +

(
∆p − D3

2
− 2A2

p − 3A2
)2

F 2 = A2
p

{(
1 + 2

A2
p

A2
p

)2
+
[
∆p − A2

p − 2A2

A2
p

(
∆p − D3

2
− 3A2

)]2}
sin(ϕ) = 1

A2
p

cos(ϕ) =
∆−(2A2

p+3A2
p)

A2
p

= 1
A2

p

(
∆p − D3

2
− 3A2 − 2A2

p

)
sin(ψ) = Ap

F

[
∆p − A2

p − 2A2

A2
p

(
−3A2 − D3

2
+∆p

)]
cos(ψ) = Ap

F

(
1 + 2A2

A2
p

)
. (16)

By assigning specific values to any two of Ap, A, A
in, ∆p, and ∆, we can numerically determine the

relationship between the remaining three variables, enabling us to express any two of them as a function
of the third.

3.3 Quantum Fluctuation Equations

To explore the quantum properties of the signal and idler, we need the quantum fluctuation equations
derived from Equation (15). Given that we have the steady-state equations, we modify Equation (15) by
setting âj = αj + δâj. We treat the pump field as a classical field, thus δâp = 0. Higher-order fluctuations
are also neglected.
Define a vector containing the fluctuations of the signal and idler as:

δÂ =
(
δâ−Le

−iθ−L , δâ†−Le
iθ−L , δâ+Le

−iθ+L , δâ†+Le
iθ+L

)T
, (17)

where θj is the phase of the mean value αj = Aje
iθj . The time evolution of these fluctuations is given by:

1

Γ
· dδÂ

dt
=M · δÂ+ T in · δÂ

in
+ T loss · δÂ

loss
, (18)

where Γ = Γi, T
in = diag

(√
2γ,

√
2γ,

√
2γ,

√
2γ
)
and T loss = diag

(√
2µ,

√
2µ,

√
2µ,

√
2µ
)
. The matrix

M is derived from the linearization process, and its elements are related to the field’s mean values and
detunings.
The evolution of these fluctuations in the frequency domain can be given by the Fourier transform. After
introducing the input-output relationship of the resonator:

âout = −âin +
√

2γâ, (19)
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we obtain:
δÂ

out
(ω) = −δÂ

in
+ TδÂ

=
(
T (iω −M)−1 T in − I

)
· δÂ

in
+ T (iω −M)−1 T loss · δÂ

loss
, (20)

where T = diag
(√

2γ,
√
2γ,

√
2γ,

√
2γ
)
, and I is the identity matrix.

The output spectral noise density matrix is defined by:

S(ω) =
〈
δÂ

out
(ω)δÂ

out T
(−ω)

〉
=
(
T (iω −M)−1 T in − I

)
⟨δÂ

in
(ω)δÂ

in T
(−ω)⟩

(
T (−iω −M)−1 T in − I

)T
+
(
T (iω −M)−1 T loss

)
⟨δÂ

loss
(ω)δÂ

loss T
(−ω)⟩

(
T (−iω −M)−1 T loss

)T . (21)

4 Bipartite Entanglement Generation and Analysis in WGMRs

When a monochromatic pump light is below the threshold, it generates bipartite entanglement on both
sides symmetric to the pump frequency. As the pump light power increases, it will excite other resonances
above the threshold, which will act as new pump lights, generating a complex entanglement structure. For
bipartite entanglement in Gaussian continuous-variable quantum physics, we can use the Duan criterion
to distinguish the degree of quantum entanglement.[42, 43, 41, 44]

Here, we define the position operator and momentum operator as X̂1,2 =
â1,2+â†1,2√

2
, Ŷ1,2 =

−i(â1,2−â†1,2)√
2

. The

rotated position and momentum operators are the superposition of the position and momentum operators,(
Y rot
±
Xrot

±

)
=

(
cos(θ±) sin(θ±)
− sin(θ±) cos(θ±)

)( Ŷ1±Ŷ2√
2

X̂1±X̂2√
2

)
. (22)

The Duan criterion has the following form:

C = ∆2(X̂rot
− ) + ∆2(Ŷ rot

+ )− |G| ≥ 0, (23)

where G = cos(θ+ − θ−).
In above equation, ∆2(∗) represents the covariance of operators, and it is the superposition of elements of
S(ω). If the Duan criterion is not satisfied, that is C < 0, the bipartite elements are entangled, and the
smaller the value of C, the better the quantum entanglement. We can tune θ+ and θ− to minimize C to
Cmin, which is the real entanglement degree hidden behind specific operators.

5 Results

5.1 Below-Threshold Stability

In this section, we will delve into the solutions of the steady-state equation corresponding to Equation 16
below the threshold and analyze the stability of these solutions. To obtain the below-threshold solutions,
we set the amplitude terms A for the signal and idler light in the steady-state equation to zero. This
method allows us to isolate the solutions that exist below the threshold. In Figure 5 (a), we plotted the
quantum entanglement degrees (Cmin) corresponding to these solutions by selecting pump light amplitude
(Ap) values between 0 and 1× 1010V/m, and pump light frequency detuning (∆p) values ranging from −1
to 3GHz. However, it’s important to note that these solutions are not necessarily stable.
The instability of the below-threshold solutions corresponds to the regions above the threshold. The
stability of the solutions can be determined by examining the following stability condition equation:

M < 0. (24)
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5.2 Phase Diagram of Bipartite Entanglement in Single Modal Family

Here, M is the matrix that describes the evolution of the fluctuations in the signal and idler light modes
below the threshold (Equation 25),

dδÂ

dt
=M · δÂ. (25)

The condition M < 0 means that all the eigenvalues of the M matrix must be negative. If any of the
eigenvalues become positive, the below-threshold solution loses its stability and will eventually exceed the
threshold, leading to a different regime of operation.
By solving this stability equation, we can delineate the regions where the below-threshold solutions become
unstable. These regions are bounded by the threshold, and we have marked them in Figures 5, 6, and 7.
References[45, 46] provide critical insights into the behavior of the system as it approaches and crosses
the threshold. According to them, near the threshold, linearization method breaks down, meaning that
Equation 18 no longer holds in this region. This failure occurs because linearized approximations are
unable to fully capture the complex nonlinear dynamics near the threshold, where classical and quantum
effects becomes closer. Consequently, for regions closer to the threshold, where the linearized theory may
fail, the system behavior becomes more challenging to predict accurately using simple analytical models.
On the other hand, for regions far from the threshold and well below it, the linearized model works quite
well. This is in line with the findings of studies such as the reference,[20] which combined both experimental
and theoretical investigations of the quantum properties of comb lines during the generation of soliton
frequency combs. Using single-photon counting techniques, the study demonstrated that the linearized
theoretical model aligned remarkably well with experimental data for dissipative Kerr soliton modes below
the threshold. This alignment lends credibility to the linearized approach for studying below-threshold
dynamics, provided the system is sufficiently far from the threshold.
Therefore, in our optimization process, we consciously avoided regions near the threshold that could
potentially lead to the breakdown of the linearized model. This deliberate choice ensures that our model
remains accurate and reliable, and it simplifies the analysis of quantum optical combs in the below-threshold
regime. By carefully navigating around the regions where the linearized theory is likely to fail, we can
confidently explore the parameter space and ensure the stability of the solutions we study.

5.2 Phase Diagram of Bipartite Entanglement in Single Modal Family

In this section, we analyze the designed microcavity structure using the theoretical methods outlined in
the previous section. Our focus is on the entanglement properties of the quantum optical frequency comb
generated by the cavity. As shown in Figure 5, we specifically consider the entanglement characteristics
of the TE00 mode corresponding to L = 1 in relation to the pump amplitude and pump frequency of the
cavity, as depicted in Figure 5 (a). According to Section 5.1, we mark the invalid region with grey areas
where linearization may fail. The dark green region represents areas with no entanglement, while regions
with drastic color changes indicate modulation instability, where unstable entanglement components exist.
Other colored regions denote areas where entanglement is tunable, with entanglement varying continuously
with coordinates. Based on the characteristics of entanglement, we classify the system’s states into three
distinct phases: Non-Entanglement (NE) Phase, Modulation Instability (MI) Phase, and Entanglement-
Tunable (ET) Phase.
In the ET and MI Phases, we select characteristic points and scan the other variable (pump amplitude or
pump frequency) accordingly. Figure 5 (c, d, e, f) illustrate the relationship between pump amplitude or
pump frequency and the intensity of the pump light inside the cavity. For points in the ET Phase, the
scan lines do not pass through the MI Phase, and their curves change continuously without generating
branches. However, for point in the MI Phase, both amplitude and frequency scans pass through the MI
phase. As depicted in Figure 5 (e, f), multiple stable solutions below the threshold appear during the scan
process.
Furthermore, we observe that entanglement is more easily detected at the boundaries between the three
phases, while it tends to deteriorate closer to the boundaries with the original phases. Considering the
robustness and tunability of the system, we aim to operate in the ET Phase to maximize the discovery of
quantum entanglement in the process of generating quantum optical frequency combs.
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5.3 Single-Modal-Family Entanglement Control Consistency of QFCs

In this section, we take the fundamental mode TE00 as an example to show how to maximize entanglement
degrees. The relationship between Cmin, ∆p0 , and Apin0 is crucial for understanding and controlling the
bipartite entangled comb teeth in the fundamental mode TE00. Figure 6 presents a comprehensive heat map
illustrating this relationship across six pairs of bipartite entangled comb teeth for the fundamental mode
TE00. Each subplot (a-f) corresponds to different values of L (ranging from 1 to 6), where L represents
the label of the comb pairs.
In each subplot, the x-axis represents the pump amplitude Apin0 in units of 1010 V m−1, and the y-axis
represents the pump detuning ∆p0 = ωp0 − Ωp0 in GHz. The color in the heat map indicates the value of
Cmin, with a color bar ranging from red (0.4) to purple (-0.5), as shown on the right side of the figure. This
color gradient visually captures the sensitivity and the distribution of entanglement degree across different
pump amplitudes and detuning. Unlike the heat map in Figure 5, the heat map in Figure 6 is drawn using
an interval method to better identify areas of strong entanglement.
The star-marked points in all six figures represent the same position, indicating the best pump conditions.
The consistent pattern observed across the subplots suggests a similar distribution of the entanglement
degree (Cmin) for different values of L. Specifically, the star-marked points denote the optimal conditions
where the pump light parameters achieve a stable entanglement degree, essential for consistent QFCs.
Interestingly, as L increases from 1 to 6, the ET Phase area broadens. This broadening is consistent with
theoretical predictions that suggest the frequency regions far from the center of Lorentzian line shapes
exhibit less sensitivity to pump detuning. This behavior highlights the robustness of the entanglement
degree in maintaining consistency across varying pump conditions, crucial for practical implementations
of QFCs in quantum communication and computation. The broader ET Phase area for higher L values
also suggests potential avenues for optimizing QFCs by strategically selecting pump conditions to achieve
maximal entanglement efficiency.

5.4 Simultaneously Maximizing Entanglement of QFCs in Distinct Modal Families

In this section, we delve into the challenge of simultaneously maximizing entanglement in QFCs across
distinct modal families. Figures 7 and 8 provide comprehensive visualizations and analysis to illustrate
the intricate dynamics involved in achieving optimal entanglement conditions.
Figure 7 presents a heat map showcasing the relationship between Cmin, ∆p0 , and Apin across different
modal families. Each subplot represents a combination of modal families (TE00, TE10, TM10) with varying
L values (L = 1, 3, 6). The color gradient indicates the value of Cmin, with red marking the relatively
high entanglement degree.
In each subplot, the x-axis denotes the pump amplitude Apin in units of ×1010 V m−1, and the y-axis
denotes the pump detuning ∆p0 = ωp0 − Ωp0 in GHz. As we use a monochromatic pump light to excite
all modal families, when we optimize entanglement ∆p0 must be the same. The red dashed lines and the
star markers indicate the optimal conditions for maximizing entanglement. The figures reveal that the
best pump conditions for the modal families are ∆p0 = 0.36 GHz, Apin = 1.1 × 109 V m−1 for TE00,
Apin = 2.45 × 109 V m−1 for TE10, and Apin = 1.65 × 109 V m−1 for TM10. This optimal tuning ensures
maximal entanglement degrees while avoiding the MI Phase for robustness.
The detailed analysis of Figure 7 also indicates that for higher L values, the ET Phase area broadens. The
reason for this broadening is the same as explained in the previous section.
Figure 8 further explores the dynamics of pump and comb teeth pairs power A2

p and A2, along with the
entanglement degree at the best pump amplitude conditions for L = 1 of all three modal families. The
subplots illustrate the variations in cavity dynamics for TE00, TE10, and TM10 modal families. The top row
(a-c) shows the pump light power in the cavity A2

p as a function of pump detuning with pump amplitude
Apin fixed. The middle row (d-f) represents the comb teeth pairs power in the cavity, highlighting that
all tuning processes are below the threshold and avoiding bi-stability. The bottom row (g-i) shows the
entanglement degree Cmin, where each modal family achieves maximal entanglement at the identified
optimal pump conditions.
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Specifically, Figure 8 reveals that when tuning the pump frequency from the ET Phase to the NE Phase,
the power in the cavity initially increases and then decreases, with no bi-stability observed. Then we delve
into strategies aimed at maximizing entanglement within QFCs across distinct modal families within the
microcavity structure. While the previous discussion focused on entanglement control within a single modal
family, here we extend our analysis to encompass multiple modal families. By maximizing entanglement
across these distinct families, we aim to enhance the versatility and functionality of QFCs for quantum
applications.

6 Discussion

In our setup, we carefully choose the resonance peaks of our pump, ensuring that the peaks of the three
distinct modal families overlap effectively at the pump wavelength. Since our simulations are based on
a near-cold cavity scenario, they do not account much for SPM, XPM and Bragg Scattering effects that
typically arise when operating at high power levels. This approach simplifies our analysis and allows
us to evaluate the system’s behavior in the low-power regime without interference from Kerr nonlinear
phenomena. However, high pump power is also considerable because we have included SPM and XPM as
an add-on in the Hamiltonian for determining threshold, as shown in Equation (13). As a result, we can
use absolute detuning to cold pump resonance peak, without using relative detuning to hot moving peak.
At low pump power, due to the effective overlap of modal families’ resonances at the pump wavelength, we
can use monochromatic pump light to excite them. Consequently, our system only needs an additional SLM
to modulate the pump profile, allowing a regular microcavity to generate spatially multiplexed quantum
entangled optical frequency combs. Moreover, our simulation is based on steady-state equations, which
indicate the stable states the system will be in under thermal equilibrium. In the NE and ET Phase, there
is only one solution below the threshold, but in the MI Phase, there are multiple solutions, all of which
are below the threshold.
The influence of fabrication errors on the performance of WGMR systems must also be carefully considered.
One of the most significant impacts of fabrication errors is on the geometric dimensions of the resonator,
such as variations in the radius and cross-sectional shape. These deviations can alter the designed disper-
sion, resulting in shifts in the resonance frequencies. A key objective of this work is to achieve the overlap
of as many resonant peaks from different modal families as possible. However, such fabrication errors
could severely affect this, as resonance shifts directly influence whether a single monochromatic pump can
efficiently excite multiple spatial modes simultaneously.
Additionally, the matching between the shapes of the resonator and the waveguide significantly affects the
coupling efficiency between modes and the overall Q-factor, further impacting the spatial mode distribution
of the pump. Variations in the coupling due to geometry changes could affect the balance of pump
spatial modes. Moreover, increased surface roughness will lead to a reduction in the Q-factor, which
in turn affects the efficiency and stability of frequency comb generation. Higher-order mode coupling is
particularly sensitive to fabrication errors, which may lead to notable changes in the multi-mode coupling
characteristics.
To address these issues, several potential compensation and optimization strategies can be employed. First,
adjusting the pump wavelength can partially compensate for the frequency shifts and variations in mode
coupling efficiency caused by geometric errors. Second, utilizing high-precision fabrication techniques
can minimize the impact of surface roughness on the Q-factor. Furthermore, in experimental settings,
fabrication-induced errors can be mitigated through precise calibration of the system’s transmission spectra.
By measuring the transmission spectra of the microring resonator, the actual coupling rates and loss rates
of different modes can be fitted, allowing for more accurate simulations that replace the original design
parameters. Finally, by using a SLM to modulate the pump light, we provide additional flexibility for
optimizing the spatial mode distribution of the pump, offering greater control in subsequent pump mode
adjustments.
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7 Conclusion

We build an on-chip Si3N4 WGMR capable of supporting multiple modal families. Quantum entangled
frequency combs can be formed around the pump frequency based on the third-order nonlinearity. With
continuous-wave and below-threshold pumping, in each modal family, we can generate bipartite-type entan-
gled quantum frequency combs which are useful in both discrete-variable and continuous-variable quantum
processing. We employ the bipartite entanglement criterion to quantify the entanglement of bipartite comb
teeth in each modal family. In our scheme, we do not need to consider nonlinear interactions across dis-
tinct modal families, as the pump is monochromatic. As shown in our simulation and analysis, there
is no complex entanglement structure beyond the bipartite type within below-threshold pumping. With
our quantum frequency comb, we are able to provide quantum entangled states in no fewer than twelve
channels of each modal family, and in our design, we support three modal families as multiplex channels
in a single WGMR, making it a suitable solution for multi-channel quantum information networks. Our
approach makes use of higher-order modal families to generate quantum frequency combs which is not
used in traditional quantum frequency comb generation methods and is capable of generating high-density
entanglement. Among these channels, we can optimize the entanglement degree of each mode at any
stage under certain initially set injected pump power and pump detuning through temperature adjust-
ment, which may inspire better quantum resources and lead to better understanding of the entanglement
mechanism.
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(a)

①
①

②

②

(b) (c)

Figure 1: (a) On-chip microring resonator coupling to add-through waveguide. The pump light is transmitted through the
waveguide, partially coupled into the micro-ring cavity, and generates QFCs through the third nonlinearity, which are then
coupled out. ➀ and ➁ respectively show the cross-sectional structures of the micro cavity in different regions. In ➀, the
structure of the coupling region between the micro cavity and the waveguide is depicted. This structure acts as a beamsplitter,
where the transmittance and reflective coefficients, denoted as t and r respectively, remain flat due to the proximity of the
pump, signal, and idler light frequencies considered in this paper. ➁ displays the cross-section of the micro-ring cavity, which
features an Si3N4 waveguide encapsulated by an SiO2 cladding. The waveguide is structured in a trapezoidal shape, and its
parameters are listed in Table 1. The microring cavity we designed can support four modal families, including TE00, TM00,
TE10, and TM10 modes. (b, c) Dispersion relationship of the four modal families Dint. The abscissa represent frequency and
resonance peak distance reference to that one around 214.6 THz.

Table 1: Cavity structure parameters shown in Figure 1 (a) ➁. R is the radius of the whole ring structure.

Cavity structure parameters Values Units
Ww 0.8 µm
Wh 1.8 µm
θ 89 deg
Cb 1.7 µm
Ch 6.5 µm
Cw 8.0 µm
R 240 µm
d 490 nm

Table 2: Cavity parameters generated by COMSOL Multiphysics simulation for all supported modal families.

Parameters Mode 1 (TE00) Mode 2 (TM00) Mode 3 (TE10) Mode 4 (TM10)
D1 [rad s−1] 6.02× 1011 5.94× 1011 5.79× 1011 5.76× 1011

D2 [rad s−1] 2.57× 106 5.64× 106 1.48× 107 1.28× 107

D3 [rad s−1] −4.34× 103 5.04× 102 −2.43× 103 5.95× 103

D4 [rad s−1] −7.45× 100 −3.32× 101 −5.69× 101 −7.72× 101

D5 [rad s−1] 3.20× 10−2 1.22× 10−1 3.06× 10−1 3.28× 10−1

fsr [GHz] 9.58× 101 9.45× 101 9.21× 101 9.17× 101

f0 [THz] 2.145933× 102 2.146082× 102 2.145928× 102 2.145932× 102

λ0 [nm] 1.397026× 103 1.396929× 103 1.397029× 103 1.397027× 103

Aeff [µm2] 1.13× 100 1.30× 100 1.38× 100 1.37× 100

neff [µm2] 1.86× 100 1.84× 100 1.77× 100 1.75× 100

η [m W−1] 9.59× 10−1 8.28× 10−1 7.83× 10−1 7.86× 10−1

g0 [µm2] 2.34× 100 2.08× 100 2.13× 100 2.17× 100

Q 1.00× 106 1.00× 106 5.00× 105 5.00× 105

µ/(γ + µ) 4.50× 10−1 4.50× 10−1 4.50× 10−1 4.50× 10−1
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L 0 +LL 0 +L

L p +L

Figure 2: Resonances under anomalous dispersion. Solid lines are perfectly equispaced, which represents the location of the
output comb lines. Black slashes represent the location of the resonances under anomalous dispersion. It illustrates the
relationship between the laser frequency Ωp = Ω0, cold-resonance frequency ωp = ω0, and the cold cavity pump detuning
∆p = ω0 − Ω0. As for mode −L/ + L, the cold cavity detuning ∆−L/+L = ω−L/+L − Ω−L/+L = ∆p + Dint, assuming
D2 ≫ D3 and L small.
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Figure 3: Transmission spectrum of our cavity around 214.6 THz. T is the aligned transmission coefficient. Different modal
families experiencing different Q factors are plotted in Lorentzian line shapes ranging 5∆ω with different colors (blue: TE00,
orange: TM00, green: TE10, red: TM10), ∆ω is the full width at half maximum of the resonators. TE00,TE10,TM10 have a
significant overlap region, allowing for effective excitation of all three resonance modes using the same frequency pump light.
The yellow region in the background represents the tuning range of the pump light frequency, spanning approximately 4 GHz
across the entire selection area.

a×TE00

+
b×TE10

+
c×TM10 Pump Profile

Figure 4: Pump mode profile modulation. To enable using pump light with same frequency to excite all three modal families,
the mode profile of the pump light needs to be a superposition of the three modal families.
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Figure 5: (a) Heat map of the relationship between the quantum entanglement degree (Cmin), pump light frequency (∆p0 =
ωp0

−Ωp0
), and pump light amplitude (Apin0

) in the fundamental mode TE00, where color indicates the value of Cmin. The
two star-marked points here are at the same position of (b), gray region with red edges: invalid regions where linearization
breaks down, the same in (b). (b) Phase diagram corresponding to (a). Based on the characteristics of the entanglement
degree, the entire diagram is divided into three phases: the Non-Entanglement (NE) Phase with entanglement degree almost
zero, the Entanglement-Tunable (ET) Phase with entanglement degree gradually changing, and the Modulation Instability
(MI) Phase with entanglement degree unstable. One of the chosen two points is in ET Phase, the other MI Phase. (c, d) For
the point in the ET Phase, we conducted cross-sectional scans along their corresponding pump frequencies or amplitudes to
study the characteristics of different phases and the variation in the power of the intra-cavity pump light during the phase
transition process. (e, f) The same process as (c, d), but point in MI Phase.
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Figure 6: Heat map of the relationship between the quantum entanglement degree (Cmin), pump light frequency (∆p0
), and

pump light amplitude (Apin0) of the six pairs bipartite entangled comb teeth in the fundamental mode TE00, where color
indicates the value of Cmin, gray region with red edges: invalid regions where linearization breaks down. The star-marked
points in all six figures are at the same position. (a, b, c, d, e, f) Generated six comb pairs near pump light, with label
L = 1, 2, 3, 4, 5, 6, follow almost the same distribution. The NE Phase area boarder as L increase which is corresponding
to theories that for the frequency far from the center of Lorentzian line shapes, it will be less sensitive to pump detuning.
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Figure 7: Heat map of the relationship between the quantum entanglement degree (Cmin), pump light frequency (∆p0
), and

pump light amplitude (Apin) in different modal families, where color indicates the value of Cmin, gray region with red edges:
invalid regions where linearization breaks down. Here we choose only three pairs comb teeth of each modal family, considering
single-modal-family entanglement control consistency. Because pump frequency of the three modal families must be the same,
the only entanglement tuning method is tuning pump light amplitude when the frequency fixed. The red star mark in each
figure gives out the maximal entanglement degree in the ET Phase, as we avoid near the MI Phase for robustness. The best
pump condition for modal families is “∆p0

= 0.36 GHz, TE00 : Apin = 1.1 × 109 V m−1, TE10 : Apin = 2.45 × 109 V m−1,
TM10 : Apin = 1.65× 109 V m−1”.
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Figure 8: Dynamics of pump and signal/idler light power A2
p and A2, and entanglement degree at the best pump amplitude

condition and L = 1. (a, b, c) Pump light power in the cavity A2
p. When tuning pump frequency from the ET Phase to the

NE Phase, the power first increases and then decreases, and no bi-stability found here. (d, e, f) Signal/Idler light power in
the cavity, all tuning processes are under threshold. (g, h, i) All modal families arrive maximal entanglement at our best
pump frequency, when A2

p is not the maximum value.
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The research presents the generation of quantum entangled frequency combs in a silicon nitride WGMR. Under profile-
modulated monochromatic, below-threshold continuous-wave pumping, bipartite entanglement forms across multiple modal
families, supporting twelve channels per family. This approach enhances multi-channel quantum network capabilities and
allows optimization of the entanglement degree through pump intensity and frequency adjustments, providing better quantum
resources.
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