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Broadband achromatic metalens design based on
deep neural networks
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For the design of achromatic metalenses, one key challenge is

to accurately realize the wavelength dependent phase profile.

Because of the demand of tremendous simulations, tradi-

tional methods are laborious and time consuming. Here, a

novel deep neural network (DNN) is proposed and applied

to the achromatic metalens design, which turns complex

design processes into regression tasks through fitting the

target phase curves. During training, x � y projection pairs

are put forward to solve the phase jump problem, and some

additional phase curves are manually generated to opti-

mize the DNN performance. To demonstrate the validity of

our DNN, two achromatic metalenses in the near-infrared

region are designed and simulated. Their average focal

length shifts are 2.6% and 1.7%, while their average relative

focusing efficiencies reach 59.18% and 77.88%. © 2021
Optical Society of America

https://doi.org/10.1364/OL.427221

Metasurfaces [1], composed of two-dimensional subwavelength
meta-unit arrays, have been widely studied because of their
exceptional capacity in manipulating optical amplitude, phase,
and polarization [2]. Metasurface-based lenses, also called met-
alenses [3–5], benefit imaging systems with high integration
and complementary metal oxide semiconductor (CMOS) com-
patibility [6]. Previous works have demonstrated the excellent
performance of monochromatic metalenses [7], but the realiza-
tion of achromatic metalenses is still challenging. Metalenses’
chromatic dispersions [8] arise from both material and light
propagation, leading to wavelength dependent focal length
shifts [Fig. 1(a)] and thus to the chromatic blur in imaging. To
obtain the achromatic metalens shown in Fig. 1(b), one solution
is to compensate for dispersion [9] with meta-units designed
to simultaneously satisfy the wavelength and position depen-
dent phase profile. Such meta-units are usually selected from
large amounts of nanostructures with known electromagnetic
(EM) responses that are traditionally calculated by numerical
approaches such as the finite difference time domain (FDTD)
method and finite element method (FEM). Some pioneering

Fig. 1. Illustrations of principles of achromatic metalenses and
meta-units. (a) Schematic of a chromatic metalens. (b) Schematic of an
achromatic metalens. (c) Geometric view of the elliptical meta-unit.
The EM response is tuned by changing the major axis r1 and the
minor axis r2. (d) Geometric view of the nanofin meta-unit. The EM
response is tuned by changing the length l1, l2 and width w1, w2 of
two rectangular nanopillars and the gap g.

achromatic metalens designs have been proposed in both vis-
ible and near-infrared bands [10–12]; even a multifunctional
metalens has been designed [13], but with limited efficiencies
and flexibility because of the requirement of large numerical
simulations.

Different from numerical approaches, deep learning [14,15]
is a data-driven method, which has dramatically pushed forward
the development of imaging processing, speech recognition, and
natural language processing [16–18]. Moreover, deep learning
has recently been introduced to nanophotonics [19–23].

Inspired by the extraordinary regression analysis ability of
deep learning, we establish a deep neural network (DNN) to
unscramble the relationship between meta-units and their
EM responses for broadband achromatic metalens design.
Furthermore, the target-fitting approach is applied to satisfy
phase requirements of broadband achromatic meta-units.
In detail, we overcome the phase jump problem with x � y

projection pairs to improve the DNN training precision, and
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we generate no-geometry data to optimize the network. To
demonstrate the performance of the well-trained DNN, two
near-infrared achromatic metalenses based on different kinds of
datasets are designed and simulated.

In our design, two kinds of meta-units, the elliptical nanopil-
lar [2] and the nanofin [10] shown in Figs. 1(c) and 1(d), are
simulated as datasets through the FDTD method. All meta-
units are made of silicon, upon a quartz base. For the elliptical
nanopillar, we sweep its major axis r1 and minor axis r2 from
0.2 to 0.8 µm to get totally 101 ⇥ 101 data pairs as dataset1.
All elliptical nanopillars have a constant height of 1.4 µm and a
period of 0.9 µm. For the nanofin, we fix its height and period
to 1.4 and 0.85 µm, respectively, and randomly pick its other
five geometric parameters including widths (w1, w2), lengths
(l1, l2), and the gap (g). Totally, 24,000 data pairs of nanofins are
simulated as dataset2.

The DNN is established with the tandem network [24,25]
to achieve good convergence in the inverse design. As illustrated
in Fig. 2(a), the DNN consists of a forward simulation network
fForward, transforming input meta-unit parameters Ŝ into cor-
responding EM responses R̃ , and an inverse design network
fInverse, aiming to predict meta-unit parameters S̃ according to
required phases R̂ . The whole architecture of the DNN can be
expressed as

Ob jForward (w, b) = argminE( fForward

⇣
Ŝ

⌘
� R̂)2, (1)

Ob jInverse (w, b) = argminE( fForward
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⌘⌘
� R̂)2,

(2)
where w and b, as the weight and bias, are parameters to be
trained, and E(. . .)2 is the mean square error (MSE) function.
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Fig. 2. DNN architecture and characterization of phase infor-
mation. (a) Architecture of the tandem DNN. The forward network
transforms input meta-unit parameters Ŝ into corresponding EM
responses R̃ . The inverse network predicts meta-unit parameters S̃

from required phases R̂ . (b) Example of the phase curve wrapped into
the range [�⇡, ⇡ ]. Phase jumps are circled with red dashed lines.
(c) With the trigonometric function, the phase is transferred into the
x � y projection pair.

In the forward network, a neural tensor layer (NTL) [26]
is added to reconcile the huge dimension mismatch between
meta-unit parameters and EM responses, which is especially
beneficial to the training of dataset1. Fully connected layers
compose other parts of the network.

Figure 2(b) depicts the phase jump problem from the
wrapped phase value gathered from the simulation. The abrupt
phase change significantly disrupts the prediction of the DNN.
To address this issue, past researchers trained and predicted the
real and imaginary parts of the complex amplitude, respectively
[27]. However, our target-fitting approach requires only the
phase information and would even descend into phase chaos
if fed with the transmittance coefficient. Here, illustrated in
Fig. 2(c), we characterize the phase value by projecting the phase
' onto x and y axes through the trigonometric relation. The
trigonometric transformation turns the jumping phase into the
continuous x � y pair, which can be learned and predicted sta-
bly by the DNN. Meantime, the phase value can be exclusively
retrieved from the x � y pair with the following formula, where
x and y are the projection pair:
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During the training process, we accelerate the convergence
with dynamic learning rates [28] and improve the DNN
performance with batch normalization [29]. Weights of the
network are adjusted incrementally through the Adam algo-
rithm. After the forward network is well trained with data pairs
(Ŝ,R̂), the weights are fixed. Then the inverse network is trained
to minimize the difference between R̂ and R̃ . The meta-unit
parameter Ŝ is generated from the intermediate layer of the
whole network. The performance of the DNN is evaluated
on the testing dataset, through the loss function defined as the
MSE between the ground truth (simulated x � y pairs) and
the predicted output (predicted x � y pairs). After 500 epochs,
x � y MSE of the tandem network is 0.098 on dataset1 and
0.147 on dataset2. Some examples of the trained phase curves
transferred from the x � y pairs are showed in Figs. 3(a)–3(d).
Phases obtained from the DNN agree well with those simulated
by the FDTD method.

Here, besides those mentioned in previous researches, we
further discuss other advantages of the tandem network. The
tandem architecture performs better than a single inverse
network because it not only promotes the convergence of train-
ing, but also captures the essence of inverse design problems.
When learning the relationship between EM responses and
meta-units with only a single inverse network, even though
a low loss is achieved, the distinction between predicted and
target EM responses remains obvious. This is because minute
errors of geometric parameters of meta-units can lead to overall
response shifts. On the contrary, the tandem network avoids
such intermediate errors by directly building the relationship
between demanding responses and real responses of predicted
meta-units.

Considering the small amount of targeting features, a two-
step optimized training process containing a fine-tuning [30]
procedure is applied to improve the precision. We utilize the
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Fig. 3. Several results from the trained and optimized DNN. (a),
(b) Examples of inverse network training results based on dataset1. (c),
(d) Examples of inverse network training results based on dataset2. In
(a)–(d), red dashed lines are phase curves predicted by the DNN, and
black solid lines are simulation results. (e) Phase errors before (red line)
and after (green line) DNN optimization in different radial positions.
Each point represents sum of phase error of all wavelengths on a certain
radial position. After optimization, the average phase error of one
wavelength is 0.0093 rad. (f ) Example of the target fitting method.
Black solid line is the target phase, while red and green dotted lines are,
respectively, the responses of the meta-units generated from the DNN
before and after optimization.

trained network as a pre-trained model, then fine-tune the
inverse network in a narrow data space where the data are similar
to target features. The fine-tuning process can be explained as
modifying the encoder (inverse network) with an ideal decoder
(well-trained and fixed forward network) in a specific dataspace.
The decline of the loss value in the narrow data space represents
the further optimization of the inverse network. We manually
generate phase curves as the dataset for fine-tuning, taking
advantage of the tandem architecture with which the input EM
response can be transferred into the output phase without meta-
unit parameters. These manual phase curves are empirically
generated by adjusting interceptions of target phase curves.

After the whole DNN is thoroughly trained and optimized,
the target-fitting method can guide the achromatic design
following the phase profile
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where r is the radial position of the metalens, � is the operating
wavelength, and f is the focal length. r0 and C0 are two con-
stants determining the initial phase at r = 0. We target two 1D
achromatic metalenses, separately based on elliptical nanopillars
(lens1) and nanofins (lens2). The operating bandwidth, focal
lengths, and radii of two metalenses are set as 1.31 ⇠ 1.55 µm

and 1.40 ⇠ 1.65 µm, f = 70 µm and f = 50 µm, and
r = 18.5 µm and r = 12.3 µm. Corresponding numerical
apertures are NA = 0.26 and NA = 0.24 for lens1 and lens2,
respectively. r0 and C0 are optimized to be 36.90 and 1.26 for
lens1, and 30.18 and �0.08 for lens2. The geometric parame-
ters of all meta-units are inversely generated through the DNN
according to the required wavelength dependent phases in
every position. Figure 3(e) summarizes phase errors of lens2
in different radial positions before and after optimization of
the DNN. Compared with the pre-trained network, the opti-
mized network obtains more accurate inverse design results.
A fitting example before and after optimization is shown in
Fig. 3(f ), indicating an obvious improvement of the overall
fitting performance through optimization.

To further verify our design, these two 1D metalenses are
simulated by the FDTD method. Figures 4(a) and 4(b) are the
1D nanostructure arrangements of two lenses. Figures 4(c) and
4(d) depict simulated normalized intensity profiles in the x � z

plane at nine selected wavelengths. Focal lengths of lens1 and
lens2 both exhibit weak dependence on the wavelength. As

Fig. 4. 1D nanostructure arrangements and simulation results
of achromatic metalenses made of elliptical nanopillars (lens1) and
nanofins (lens2). (a) 1D nanostructure arrangement of lens1. (b) 1D
nanostructure arrangement of lens2. (c) Normalized intensity profiles
in the x � z plane of lens1 at nine wavelengths, within the operating
bandwidth from 1.31 to 1.55 µm. White dashed lines are focal planes.
(d) Normalized intensity profiles of lens2 at nine wavelengths, within
the operating bandwidth from 1.4 to 1.65 µm. (e) Focal lengths,
(f ) FWHMs, and (g) focusing efficiencies of two metalenses.
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shown in Fig. 4(e), focal lengths of lens1 and lens2 are averagely
64.7µm and 44.3µm, respectively, while their mean shifts from
the average focal lengths are 2.6% for lens1 and 1.7% for lens2.
Figures 4(f ) and 4(g) characterize the full width at half maxi-
mum (FWHM) and the focusing efficiencies of two metalenses.
The absolute focusing efficiency is defined as the ratio of the
power in the focal point area with a width of 2.3 ⇥ FWHM [31]
to the total incident power, while the relative focusing efficiency
is defined as the ratio of the power in the focal point area to
total transmission power. The simulated FWHM is averagely
105.6% of the diffraction limit (0.443�/NA) for lens1, and
only 101.9% for lens2. The average relative focusing efficiencies
of lens1 and lens2 reach as high as 58.16% and 77.88%, whereas
the average absolute efficiencies drop to 28.01% and 59.18%,
respectively. Such loss can be attributed to the low transmittance
of selected meta-units. Lens2 performs better than lens1 on the
whole, because the coupled waveguide mode in the nanofin can
support a tunable dispersion, for example, a near-zero group
delay dispersion in a wide bandwidth [10].

In summary, we have proposed a DNN-based inverse design
method for broadband metalenses. The optimized DNN con-
nected phases of meta-units with their geometric parameters.
The target-fitting method was applied to both the DNN and
the selection of meta-units for achromatic metalenses. We
transformed phases into x � y projection pairs to overcome
the phase jump problem, while also manually generating phase
curves to optimize the DNN. Our design method was verified
through simulations, with two DNN-based achromatic metal-
enses corresponding to two different classes of meta-units. Our
DNN introduces intense flexibilities to nano-optical designs,
which would also find use in other inverse design processes.
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