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Abstract: Ultra-bright source of entangled photons is an essential component in optical
quantum information processing. Here we propose a counterpropagating path-entangled photon
pair sources using a quasi-periodic modulated lithium niobate crystal. The nonlinear crystal
designed by a dual-grid method, simultaneously phase-matched two spontaneous parametric
down-conversion processes. Signal and idler modes have opposite propagation directions in the
two spontaneous parametric down-conversion processes, which is the key to generating path-
entangled photon pairs. Compared to copropagating entangled sources, the counterpropagating
path-entangled sources result in a much narrower spectrum. The quantum state of the path-
entanglement source is not only suited for quantum coding, but also to allow the implementation
of complex quantum algorithms on a photonic chip.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Quantum information science is a hot research field in recent years. It includes many subfields
such as quantum computing [1–3],quantum cryptography [4–6], quantum dense coding [7,8], and
quantum teleportation [9–11]. Quantum communication is also an important field in quantum
information science. It is theoretically safe compared to classic optical communication. For
these areas of quantum information science, the essential component is an efficient and high-
quality quantum entanglement source [12, 13]. Quantum entanglement is a quantum mechanical
phenomenon in which the quantum states of two or more objects have to be described with
reference to each other, even though the individual objects may be spatially separated [14–16].
Entangled states of quantum particles highlight the nonlocality and nonseparability of quantum
mechanics [17, 18].

There are many ways to prepare entangled photon pairs. In earlier years, polarization-entangled
photon pairs came from the atomic cascade [19–21]. However, the atomic cascade sources are
not suitable for scalable optical quantum computation and quantum communication because they
are low brightness and suffer a degrade of the polarization correlations when the two photons
are not emitted back to back. Meanwhile spontaneous parametric down-conversion(SPDC) was
discovered as a convenient and robust method to produce entangled photons [15]. The process
of SPDC stems from the second order optical nonlinearity (χ(2)) in nonlinear photonic crystals.
The SPDC photon pairs sources have very high purity and reasonable intensity. Today they play
a key role in many quantum applications [22–24]. Besides another efficient method of generating
entangled photon pairs at room temperature is through four-wave mixing(FWM) medicated by
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the third order Kerr nonlinearity(χ(3)) [25–27].
Quantum entanglement can be generated in any degree of freedom in a quantum system,

such as the polarization, path, orbit-angular-momentum, frequency, or time-bin degree of
freedom. According to the traditional definition, the simultaneous entanglement in multiple
degrees of freedom of a quantum system is called hyperentanglement [28, 29]. In our work, we
demonstrate a counterpropagating path-entangled photon pairs source using periodically-poled
LiNbO3 (PPLN) crystal. We employ the scheme of quasi-phase matching in the same crystal to
produce counterpropagating photon pairs. Compared with dispersion engineering method to
reach the phase matching of a pump mode to signal and idler modes with different propagation
directions [30], the quasi-periodic modulation method of the nonlinear coefficient we used is easy
to operate. And we can make crystals of any shape by this method. The entangled photon pairs
from our entangled source are also easily collected in clearly opposite directions. This is not only
suited for quantum coding but allows the implementation of complex quantum algorithms on a
photonic chip [31].
This article is organized as follows. In Sec.2 we introduce our scheme that generates path-

entangled biphoton states and the nonlinear crystals that meet our requirements are designed. In
Sec.3 the SPDCHamiltonian is introduced and we derive the Hamiltonian of the two simultaneous
parametric down-conversion processes. In Sec.4 we derive the theoretical model of path-entangled
two-photon states. The path-entangled states produced by our crystal are demonstrated to be
maximally path-entangled bell states using theoretical analysis. The conclusions and outlooks
are presented in Sec.6.

2. The path-entangled photon pairs source scheme

In this work, we report on a new scheme for generating counterpropagating path-entangled
two-photon pairs in a monolithic quadratic nonlinear photonic crystal. Our scheme is formed by
two simultaneous SPDC processes PA and PB. Both processes have a polarization configuration
of e → e + e , which is defined as the type-0 phase matching case. In process PA, the signal
photons are emitted in the positive direction of the z-axis and the idler photons are emitted in the
negative direction of the z-axis. The photon emission direction of processes PA and PB is exactly
opposite, as schematically depicted in Fig. 1. The wavelength of the signal light is λs = 0.776µm
and the wavelength of the idler light is λi = 0.8428µm in processes PA and PB. The light source
is a 404nm continuous-wave (cw) laser. Besides, the nonlinear crystal works at a temperature of
125◦C, at which the optimum conversion efficiency is obtained. For the specific frequency mode
of the signal light and the idler light, i.e. the frequency listed above, the path of signal photons
and the path of idler photons are uncertain but interacting in our scheme. So the path-entangled
biphoton states can be collected by our entangled source.
Designing a single nonlinear crystal that simultaneously implements multiple parametric

down-conversion processes is a main challenge in the scheme. According to the knowledge
of nonlinear optics, the parametric down-conversion process can occur only if the momentum
conservation (∆k = 0) and energy conservation conditions are met. However, the phase-matching
condition (the momentum conservation) is often difficult to achieve because the refractive index
of materials is an increasing function of frequency known as normal dispersion. The effective
solution to the problem of phase-matching is known as quasi-phase-matching. Through quasi-
periodic modulation of the nonlinear coefficient, the single nonlinear crystal can phase-match the
PA and PB two processes at the same time.

We use the dual-gridmethod to design the required nonlinear photonic crystal [32]. Thismethod
provides a systematic algorithm for designing a crystal that can simultaneously implement different
interactions with arbitrary phase-mismatch values. In our case, there are two simultaneous SPDC
processes PA and PB. The phase-mismatch values shown in Fig. 2 are ∆kA = kp − ks + ki and
∆kB = kp + ks − ki , respectively. The subscript p, s, and i mean pump light, signal light, and
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Fig. 1. The SPDC processes with counterpropagating photon pairs. The signal light is shown
in red, the idler light is shown in blue, and the pump light is shown in yellow. The top right
of the figure is the partial zoom of our nonlinear crystal. The lower part of the figure is a
schematic diagram of the crystal design. The figure on the lower left is the one-dimensional
quasi-periodic lattice composed of two basic lattice tiles. The green is marked as TA and the
blue is marked as TB . Their lengths are la = 82.4 nm and lb = 89.29 nm respectively. The
lower right figure is the final nonlinear crystal. The black blocks indicate that the nonlinear
coefficient is positive and the white blocks are opposite.

idler light, respectively.

pkk
ik

sk
BkD

p i s Bk k k k= - + Dk k k k

pkk

ik
AkDk

p s i Ak k k k= - + Dk k k k

sk

Fig. 2. The sketch of showing the momentum conversation. ∆kA and ∆kB are the phase
mismatches of processes PA and PB . The left half of the picture is the phase matching
condition of process A. The right half of the picture is the phase matching condition of
process B.

The signal photon and idler photon are counterpropagating, which means that now the signal
and idler momenta almost cancel each other and the phase-mismatch value to be accounted for
by the quasi-phase-matching method is very close to the pump momentum. The phase-mismatch
values of the two SPDC processes need to be compensated by the reciprocal lattice vectors
(RLV) of one-dimensional quasi-periodic crystal. By applying the one-dimensional version of the
dual-grid method, we obtained a one-dimensional quasi-periodic lattice, which consists of two
basic lattice tiles labeled TA and TB. We built the nonlinear crystal from the lattice by modulating
the nonlinear coefficient in the lattice tiles TA and TB to be positive and negative, respectively.
The nonlinear coefficient modulation for the different lattice tiles can also be seen as choosing a
building block for each lattice tile. These building blocks have a specific duty cycle (defined as
the ratio of the positive domain length to the building length). In our crystal, the building blocks
BA and BB are made with 100% duty cycle and 0% duty cycle, respectively. The length of the
building blocks BA and BB is 82.4 nm and 89.29 nm respectively, which equal to the length of
tiles TA and TB. This is illustrated in Fig. 1.
The nonlinear crystal we designed is a 40 mm long, 11.26 mm wide, and 1 mm thick 5%

MgO-doped congruently grown LiNbO3 crystal. The second order nonlinear coefficient χ(2)
of the LiNbO3 crystal is modulated by the electric field poling way. We obtained the desired
distribution of χ(2) by applying an electric field through patterned electrodes on the crystal surface.
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In addition, the input and output surfaces of the crystal were antireflection-coated for the pump,
signal, and idler light to increase conversion efficiency. The crystal design process was rigorously
verified by our simulation programs. The simulation parameters in the program are the same
as the Ref [33, 34]. These parameters are also listed in the first paragraph of this section. The
phase-mismatch values are ∆kA = 35.07µm−1 and ∆kB = 38.003µm−1 for the SPDC processes
PA and PB in our scheme. The numerical simulation results show that the nonlinear crystal has
the desired reciprocal lattice vectors in its reciprocal lattice. These reciprocal lattice vectors
exactly achieve the momentum balance for the SPDC processes PA and PB, which means that
the phase mismatches ∆kA and ∆kB are compensated by the reciprocal lattice vectors. The
Fourier coefficients of the two processes are not exactly equal, but they are approximately equal
to 0.4034. Figure 3 shows the Fourier coefficient at different phase mismatches. It can be seen
from the figure that the expected SPDC processes PA and PB can be effectively produced and
other parameter processes are suppressed.
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Fig. 3. The Fourier transform of our quasi-periodic lattice. The main reciprocal lattice
vectors of the nonlinear photonic crystal are GA and GB and other vectors can be ignored.

3. The SPDC Hamiltonian

To analyze how the photon pair of signal mode and idler mode are generated, we treat the SPDC
process using the Hamiltonian of the three-mode interaction including pump mode, signal mode,
and idler mode. We assume the nonlinear crystal of length L centered at the origin. And all
electric fields collinearly propagate along the z axis in a single spatial mode. This means that
the down-converted beams are constrained to be collinear with the pump beam. We completely
ignore the transverse spatial modes of the three interacting electric fields. In the experiment, this
can be achieved using the pinholes.

In the interaction picture, the nonlinear interaction Hamiltonian for type-0 interaction may be
taken to be

ĤI (t) = ε0

∫ L
2

− L
2

dzχ(2) (z) Êp (z, t) Ês (z, t) Êi (z, t) , (1)
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where the quantized electric fields can be divided into positive and negative frequency parts:

Êm (z, t) = Ê (+)m (z, t) + Ê (−)m (z, t) ,

Ê (+)m (z, t) = Ê (−)†m (z, t)

=

∫
dωmAm (ωm) e j[km(ωm)z−ωmt]âm(ωm).

(2)

In the above formulas, m = p, s, or i identifies the pump, signal, and idler waves, respectively.
km is the wave vector of mode m. âm(ωm) is the photon annihilation operator which destroys
one photon with mode m at frequency ωm. Am (ωm) = i

√
~ωm/πε0n2

m (ωm0) LW2
0 is a slowly

varying function of frequency because the bandwidth ∆ω of the electric field of mode m is very
small compared to their central frequency ωm0 and we only take into account the rather flat
dispersion in nonlinear crystals. So Am (ωm) may be taken outside the integral. Note that W0 in
the expression of Am (ωm) labels the beam waist radius.

In our proposal, theHamiltonian of the two simultaneous parametric down-conversion processes
that satisfy type-0 phase-matching condition can be expressed as:

Ĥf (t) ∝ ε0

∫ L
2

− L
2

dzχ(2) (z) E (+)p (z, t) Ê (−)s (z, t) Ê (−)i (z, t) + H.c. (3)

In the nonlinear photonic crystal, the pump, signal, and idler waves are collinear along the z axis,
and the signal wave and idle wave always travel in opposite directions. So the negative parts of
quantized electric fields for signal and idler waves are as follows:

Ê (−)s (z, t) =
∫

dωsA∗s (ωs) [e−j[ks (ωs )z−ωs t]â†F,s(ωs) + e−j[−ks (ωs )z−ωs t]â†B,s(ωs)], (4)

Ê (−)i (z, t) =
∫

dωi A∗i (ωi) [e−j[ki (ωi )z−ωi t]â†F,i(ωi) + e−j[−ki (ωi )z−ωi t]â†B,i(ωi)]. (5)

Because a SPDC process is very inefficient, We must use a bright pump field at the input. We
consequently treat the incoming pump field as a classical field. The electric field expression of
the pump wave can be replaced by the following equation:

E (+)p (z, t) = E (−)∗p (z, t)

= Ap

∫
dωpα(ωp)ei(kpz−ωp t),

(6)

where α(ωp) is the spectral distribution ranging from center frequency δ(ω − ωc) for cw laser
sources.

Finally, inserting Eqs. (4)-(6) into Eq. (3), we get a more detailed Hamiltonian expression for
the two simultaneous SPDC processes in our scheme.

Ĥf (t) ∝
∫ L

2

− L
2

dz
∭

dωpdωsdωi χ
(2)(ωp, ωs, ωi, z)AsAi Apα(ωp)

× {e j {[kp (ωp )−ks (ωs )+ki (ωi )]z−[ωp−ωs−ωi ]t } â†F,s(ωs)â†B,i(ωi)

+ e j {[kp (ωp )+ks (ωs )−ki (ωi )]z−[ωp−ωs−ωi ]t } â†F,i(ωi)â†B,s(ωs)}.

(7)

In our photon-entanglement source scheme, the bandwidth of signal photons and idle photons
is very narrow. So the second order optical nonlinearity χ(2)(ωp, ωs, ωi, z) change little in the
narrow-band spectrum. We assume that it is only related to position in our calculation process.
In fact, this assumption only affects the degree of entanglement of our path-entanglement source,
but it does not affect the characteristics of path entanglement.
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4. Theoretical model of path-entangled biphoton states

In this section, we derive the theoretical expression of path-entangled two-photon states on
the basis of the Hamiltonian shown in the previous section. Following a standard approach in
deriving two-photon states created by the SPDC process [35], we assume that the pump field is
not depleted during propagation through the crystal and the interactions that are weak enough
only produce two-photon states and neglect four- or higher photon states. These assumptions
are also reasonable, since only a minor part of the strong pump beam is lost during the SPDC
process. Consequently, we obtain the path-entangled two-photon states in the interaction picture
as follows.

|ψ(t → +∞)〉 ≈ |ψ(t → −∞)〉 − i
~

∫ +∞

−∞
Ĥf (t) |ψ(t → −∞)〉 dt . (8)

where |ψ(t → −∞)〉 = |0〉s |0〉i . We further extended the time to plus and minus infinity in
this equation, which is justified since we regard any two-photon state long after the nonlinear
interaction in the medium. In the above equation, the first term is simply the initial state, which
is assumed to be the vacuum state. We are interested in the second term. Hence, combining Eqs.
(7) and (8) and simplifying the result, we arrive at

|ψ2〉 = T
∬

dωsdωiα(ωs + ωi)[ΓA(ωs, ωi) |s, F, ωs〉 |i, B, ωi〉 + ΓB(ωs, ωi) |s, B, ωs〉 |i, F, ωi〉],

(9)

where |s/i, F/B, ωs/ωi〉 = â†
s/i,F/B,ωs/ωi

|0〉s/i is the single photon state in the signal/idler mode
propagating forward/backward at the frequencyωs/ωi . The pumpdistributionα(ωp) = α(ωs+ωi)
represents the energy conservation condition ωp = ωs + ωi . ΓA(ωs, ωi) and ΓB(ωs, ωi) are the
phase-matching functions of processes A and B, respectively. They are defined as:

ΓA(ωs, ωi) =
∫ L

2

− L
2

χ(2)e j[kp (ωs+ωi )−ks (ωs )+ki (ωi )]zdz

ΓB(ωs, ωi) =
∫ L

2

− L
2

χ(2)e j[kp (ωs+ωi )+ks (ωs )−ki (ωi )]zdz

(10)

The phase-matching functions result from momentum conservation condition, which is dependent
on the second-order nonlinear coefficient structure and the length of the nonlinear crystal. The
path-entangled two-photon states feature an intricate spectral distribution dependent on the pump
distribution and the phase-matching functions.
Figure 4 also confirmed this conclusion. The phase-matching functions of the SPDC with

counterpropagating signal and idler photons are discrete in our nonlinear crystal. This is due to
the quasi-periodic modulation of the second-order nonlinear coefficient of our lithium niobate
crystal. Figure 3 shows the Fourier transform of our quasi-periodic lattice. This Fourier transform
spectrum is discrete, which means that the reciprocal lattice vectors of the nonlinear photonic
crystal are discrete and the Fourier coefficients are mainly concentrated on the two reciprocal
lattice vectors we design. So only some discrete parametric processes implement quasi-phase
matching in our quasi-periodic modulation crystal. The phase-matching amplitude therefore
also exhibits discrete features. In the case of a cw-laser source width a narrow linewidth, the
joint-spectral amplitude distribution of pump spectral distribution and phase-matching spectral
distribution is formed under conditions of the energy conservation and momentum conservation.
We can see from the figures that the parametric down-conservation processes A and B occur
simultaneously and other processes are completely suppressed. This result also shows that
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Fig. 4. The spectrum distribution of simultaneous spontaneous parametric processes A
and B. (a), (c) phase-matching functions of process A and process B, respectively. (b),
(d) joint-spectral amplitude distribution of process A and process B, respectively. The
joint-spectral amplitude of process A is determined by the continuous-wave laser source and
its phase matching function ΓA in the first row. The process B is the same in the second row.

our scheme is feasible. Note that the joint-spectral distribution functions of the simultaneous
parameter processes A and B describe the spectral properties of the generated photon pairs.
To generate a maximally path-entangled two-photon state, we must have the same nonlinear

efficiency along with modal and spectral indistinguishability for processes A and B [30]. For
modal indistinguishability, this can be guaranteed because the forward propagation and backward
propagation counterparts of the signal and idler modes in a single crystal are identical. As for
spectral indistinguishability, We can verify it through the simulation results in Fig. 4. The
nonlinear efficiencies of processes A and B are defined as

∬
dωsdωiα(ωs + ωi)ΓA(ωs, ωi) and∬

dωsdωiα(ωs + ωi)ΓB(ωs, ωi), respectively, which depend on the Fourier transform of our
quasi-periodic lattice. The nonlinear efficiency is proportional to the Fourier transform coefficient
and pump distribution. So the value of joint-spectral distribution in the Fig. 4 is also proportional
to the nonlinear efficiency. From the joint-spectral distribution, the nonlinear efficiencies of
processes A and B are very high, while the nonlinear efficiencies of other nonlinear processes are
almost zero in our scheme. The nonlinear efficiencies of processes A and B are approximately
equal. To further illustrate the nonlinear efficiency value, we respectively plot the nonlinear
efficiencies of the processes A and B as the function of crystal length.
According to the definition of nonlinear efficiencies of processes A and B above, nonlinear

efficiency is related to the length of the crystal. In Fig. 5, we plot the nonlinear efficiency values
at different position in the crystal in order to determine whether the nonlinear efficiencies of
processes A and B are equal. As can be seen from the figure, nonlinear efficiency gradually
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Fig. 5. The nonlinear efficiencies of processes A and B as the function of crystal length. (a)
process A. (b) process B. From the inserted figures, the nonlinear efficiency fluctuates with
distance but the overall trend is increased. The effective difference between the nonlinear
efficiencies of processes A and B is only one percent.

becomes larger as the crystal length increases. And the nonlinear efficiency periodically increases
by a short distance, as shown in the insert. This is due to the quasi-periodic modulation of the
second-order nonlinear coefficient in nonlinear crystal. Besides the nonlinear efficiencies of the
two processes are different, but their difference is extremely small. One of the reasons for this
subtle difference is the quantization in the simulations.

5. Discussion

Our path-entanglement source allows full control over the path degree of freedom of entangled
biphoton states compared to existing photon entanglement sources [36]. An additional degree of
freedom for creating entanglement in monolithic crystals is developed. And the path-entangled
states of our sources are easy to be collected because the propagating direction of signal and idler
modes are opposite. Different from other polarization entanglement sources based on quasi-phase
matching of SPDC processes [37, 38], the path-entanglement photon pairs from our source are
easier to be detected. In other words, the detection system does not have to be equipped with
many polarizers to rotate the photon polarization. Counterpropagating configurations in our
scheme allow the splitting of the signal and idler photons from each other. So our entanglement
scheme effectively reduces the complexity of the receiving system, which facilitates on-chip
integration of path-entanglement applications.
In this work, the spatial modes of the down converted beams from the crystal can encode

information, which is an effective way to distribute quantum keys. Our entangled sources can
also be used in some quantum information applications, such as heralded single-photon source
and quantum teleportation [39]. The heralded single-photon can be directly generated and easily
collected from a quasi-periodic modulated nonlinear crystal. Besides other degrees of freedom
like polarization and orbital angular momentum can also be manipulated inside the same crystal,
which will facilitate the preparation of hyper-entanglement with multiple degrees of freedom.
Considering the state-of-the-art domain-engineered technique, our path-entanglement source
in bulk can be developed into on-chip integrated quantum entanglement source. The inherent
stability of integrated optics make on-chip integrated path-entanglement source be a promising
choice for quantum information application which require circuits that are stable, high-fidelity
and highly reconfigurable.
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6. Conclusion

In summary, we propose an effective entangled preparation scheme, which prepares counter-
propagating path-entangled biphoton quantum states in a quasi-periodic modulated nonlinear
photonic crystal. We design the quasi-periodic modulated LiNbO3 crystals by universal dual-grid
method. The LiNbO3 crystal is a common second-order nonlinear material. It can be used to
generate SPDC processes, which is the basis of our path-entanglement source. The dual-grid
method we used is a general algorithm for designing the quasi-periodic modulated nonlinear
photonic crystals. Besides we discuss the theory of SPDC process in the two-photon picture. A
photon from the incident pump field spontaneously decays into two photons labelled signal and
idler in a second-order nonlinear photonic crystal. This process is described by the interaction
Hamiltonian for nondegenerate three-wave mixing in a lossless nonlinear dielectric medium. We
also carefully derive the expression of counterpropagating path-entangled biphoton states and
get the joint-spectral-amplitude functions. Joint-spectral-amplitude functions show the spectral
characteristics of path-entangled photon pairs.
For now, our path-entangled source is a stable, efficient and convenient device for creating

path-entangled biphoton states. Quasi-periodic modulation of second order optical nonlinearity
(χ(2)) of nonlinear photonic crystals is a versatile and effective method to achieve multiple
simultaneous parametric processes. We can achieve a variety of photon entanglement sources
based on the simultaneous SPDC processes.

Funding

National Natural Science Foundation of China (61475099), Program of State Key Laboratory of
Quantum Optics and Quantum Optics Devices (KF201701).

Acknowledgments

The authors thank the anonymous reviewers for their helpful suggestions and comments.

References
1. M. A. Nielsen, and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2011).
2. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature

409, 46–52 (2001).
3. W. -B. Gao, P. Xu, X. -C. Yao, O. Gühne, A. Cabello, C. -Y. Lu, C. -Z. Peng, Z. -B. Chen, and J. -W. Pan, “Experimental

realization of a controlled-NOT gate with four-photon six-qubit cluster states,” Phys. Rev. Lett. 104, 020501 (2010).
4. H. -K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108,

130503 (2012).
5. H. Zhang, J. Fang, and G. He, “Improving the performance of the four-state continuous-variable quantum key

distribution by using optical amplifiers,” Phys. Rev. A 86, 022338 (2012).
6. X. Wang, W. Liu, P. Wang, and Y. Li, “Experimental study on all-fiber-based unidimensional continuous-variable

quantum key distribution,” Phys. Rev. A 95, 062330 (2017).
7. X. Li, Q. Pan, J. Jing, J. Zhang, C. Xie, and K. Peng, “Quantum dense coding exploiting a bright Einstein-Podolsky-

Rosen beam,” Phys. Rev. Lett. 88, 047904 (2002).
8. J. Zhang, and K. Peng, “Quantum teleportation and dense coding by means of bright amplitude-squeezed light and

direct measurement of a Bell state,” Phys. Rev. A 62, 064302 (2000).
9. S. Pirandola, J. Eisert, C. Weedbrook, A. Furusawa, and S. L. Braunstein, “Advances in quantum teleportation,” Nat.

Photonics 9, 641–652 (2015).
10. J. Yin, J. -G. Ren, H. Lu, Y. Cao, H. -L. Yong, Y. -P. Wu, C. Liu, S. -K. Liao, F. Zhou, Y. Jiang, X. -D. Cai, P. Xu,

G. -S. Pan, J. -J. Jia, Y. -M. Huang, H. Yin, J. -Y. Wang, Y. -A. Chen, C. -Z. Peng, and J. -W. Pan “Quantum
teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature 488, 185–188 (2012).

11. G. He, J. Zhang, J. Zhu, and G. Zeng, “Continuous-variable quantum teleportation in bosonic structured environments,”
Phys. Rev. A 84, 034305 (2011).

12. J. Jing, J. Zhang, Y. Yan, F. Zhao, C. Xie, and K. Peng, “Experimental demonstration of tripartite entanglement and
controlled dense coding for continuous variables,” Phys. Rev. Lett. 90, 167903 (2003).

13. X. Jia, Z. Yan, Z. Duan, X. Su, H. Wang, C. Xie, and K. Peng, “Experimental realization of three-color entanglement
at optical fiber communication and atomic storage wavelengths,” Phys. Rev. Lett. 109, 253604 (2012).

                                                                                               Vol. 26, No. 21 | 15 Oct 2018 | OPTICS EXPRESS 27953 



14. A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered
complete?,” Phys. Rev. 47, 777–780 (1935).

15. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of
polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337 (1995).

16. X. -C. Yao, T. -X. Wang, P. Xu, H. Lu, G. -S. Pan, X. -H. Bao, C. -Z. Peng, C. -Y. Lu, Y. -A. Chen, and J. -W. Pan,
“Observation of eight-photon entanglement,” Nat. Photonics 6, 225–228 (2012).

17. B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L Vermeulen, R. N.
Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner,
T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3
kilometres,” Nature 526, 682–686 (2015).

18. M. A. Rowe, D. Kielpinski, V. Meyer, C. A. Sackett, W. M. Itano, C. Monroe, and D. J. Wineland, “Experimental
violation of a Bell’s inequality with efficient detection,” Nature 409, 791–794 (2001).

19. J. F. Clauser, and A. Shimony, “Bell’s theorem: experimental tests and implications,” Reports on Prog. Phys. 41,
1881–1927 (1978).

20. A. Aspect, P. Grangier, and G. Roger, “Experimental tests of realistic local theories via Bell’s theorem,” Phys. Rev.
Lett. 47, 460 (1981).

21. A. Aspect, P. Grangier, and G. Roger, “Experimental realization of Einstein-Podolsky-Rosen-Bohm gedankenexperi-
ment: a new violation of Bell’s inequalities,” Phys. Rev. Lett. 49, 91 (1982).

22. J. -W. Pan, Z. -B. Chen, C. -Y. Lu, H. Weinfurter, A. Zeilinger, and M. Åżukowski, “Multiphoton entanglement and
interferometry,” Rev. Mod. Phys. 84, 777–838 (2008).

23. J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide
quantum circuits,” Nat. Photoncis 3, 346–350 (2009).

24. A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X. -Q. Zhou, Y. Lahini, N. Ismail,
K. WÃűrhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. O’Brien, “Quantum walks of correlated
photons,” Science 329, 1500–1503 (2010).

25. K. F. Lee, J. Chen, C. Liang, X. Li, P. L. Voss, and P. Kumar, “Generation of high-purity telecom-band entangled
photon pairs in dispersion-shifted fiber,” Opt. Lett. 31, 1905–1907 (2006).

26. J. Fan, M. D. Eisaman, and A. Migdall, “Quantum state tomography of a fiber-based source of polarization-entangled
photon pairs,” Opt. Express 15, 18339–18344 (2007).

27. J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner,
R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien,and M. G. Thompson, “On-chip quantum
interference between silicon photon-pair sources,” Nat. Photonics 8, 104–108 (2014).

28. J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys.
Rev. Lett. 95, 260501 (2005).

29. F. -G. Deng, B. -C. Ren, and X. -H. Li, “Quantum hyperentanglement and its applications in quantum information
processing,” Sci. Bull. 62, 46–68 (2017).

30. S. Saravi, T. Pertsch, and F. Setzpfandt, “Generation of counterpropagating path-entangled photon pairs in a single
periodic waveguide,” Phys. Rev. Lett. 118, 183603 (2017).

31. A. S. Solntsev, and A. A. Sukhorukov, “Path-entangled photon sources on nonlinear chips,” Rev. Phys. 2, 19–31
(2017).

32. R. Lifshitz, A. Arie, and A. Bahabad, “Photonic quasicrystals for nonlinear optical frequency conversion,” Phys. Rev.
Lett. 95, 133901 (2005).

33. S. Sharabi, G. Porat, and A. Arie, “Improved idler beam quality via simultaneous parametric oscillation and
signal-to-idler conversion,” Opt. Lett. 39, 2152–2155 (2014).

34. G. Porat, O. Gayer, and A. Arie, “Simultaneous parametric oscillation and signal-to-idler conversion for efficient
downconversion,” Opt. Lett. 35, 1401–1403 (2010).

35. W. P. Grice, and I. A. Walmsley, “Spectral information and distinguishability in type-II down-conversion with a
broadband pump,” Phys. Rev. A 56, 1627 (1997).

36. F. Laudenbach, S. Kalista, M. Hentschel, P. Walther, and H. HÃĳbel, “A novel single-crystal & single-pass source for
polarisation- and colour-entangled photon pairs,” Sci. Reports 7, 7235 (2017).

37. T. Suhara, G. Nakaya, J. Kawashima, and M. Fujimura, “Quasi-phase-matched waveguide devices for generation of
postselection-free polarization-entangled twin photons,” IEEE Photonics Technol. Lett. 21, 1096–1098 (2009).

38. H. Herrmann, X. Yang, A. Thomas, A. Poppe, W. Sohler, and C. Silberhorn, “Post-selection free, integrated optical
source of non-degenerate, polarization entangled photon pairs,” Opt. Express 21, 27981–27991 (2013)

39. G. BjÃűrk, A. Laghaout, and U. L. Andersen, “Deterministic teleportation using single-photon entanglement as a
resource,” Phys. Rev. A 85, 022316 (2012)

                                                                                               Vol. 26, No. 21 | 15 Oct 2018 | OPTICS EXPRESS 27954 




