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Frequency-Dependent Squeezing via
Einstein–Podolsky–Rosen Entanglement Based on Silicon
Nitride Microring Resonators

Haodong Xu, Zijun Shu, Nianqin Li, Yang Shen, Bo Ji, Yongjun Yang, Tengfei Wu,
Mingliang Long, and Guangqiang He*

Considerable efforts have been devoted to augmenting the performance of
displacement sensors constrained by quantum noise, particularly within
high-precision applications such as gravitational wave detection.
Frequency-dependent squeezing methodologies have adeptly exceeded the
standard quantum limit in optomechanical force measurements, catalyzing
profound advancements in the field. Concurrently, notable strides in
integrated photonics have paved the way for the realization of integrated Kerr
quantum frequency combs (QFCs). In this work, a sophisticated platform
designed for the creation of Einstein–Podolsky–Rosen (EPR)-entangled QFCs
utilizing on-chip silicon nitride microring resonators is presented. This
platform facilitates an exhaustive analysis and optimization of entanglement
performance, establishing a robust framework for noise mitigation. By
incorporating the quantum dynamics of Kerr nonlinear microresonators, the
system accommodates at least 12 continuous-variable quantum modes,
including 6 pairs of concurrently EPR-entangled states. Moreover, through
precise tuning of the detection angle of the idler mode, the signal mode
transitions into a single-mode squeezed state. Harnessing the
frequency-dependent nature of this detection angle enables the achievement
of frequency-dependent squeezing. A comparative analysis under different
dispersion conditions is also presented.

1. Introduction

Quantum noise constitutes a fundamental limitation in ultra-
precise displacement measurements, particularly in applications
such as gravitational wave detection.[1,2] It originates from vac-
uum fluctuations that infiltrate the interferometer through its
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dark readout port,[3] and is typically classi-
fied into two principal components: quan-
tum back-action noise, which arises from
photon radiation pressure, and shot noise,
which emerges due to phase fluctuations.
In the domain of gravitational wave detec-
tors, shot noise manifests as phase devi-
ations in the incoming light field, while
radiation pressure noise is induced by
fluctuations in the field’s amplitude. The
employment of squeezed light mitigates
quantum noise by diminishing the uncer-
tainty in specific quadratures of the electro-
magnetic field.[4–6] To counter shot noise,
frequency-independent squeezing has been
implemented in single quadratures at var-
ious observatories.[7,8] Optimal frequency-
dependent squeezing can be realized by
reflecting squeezed light through a low-
loss, narrowband filter cavity.[9–11] Neverthe-
less, fulfilling the stringent linewidth and
low-loss requirements essential for gravita-
tional wave detection presents formidable
challenges, even with ultra-high vacuum
systems and state-of-the-art cavity mirrors.
Specifically, achieving these requirements
necessitates a filter cavity with a minimum

length of 100 meters, resulting in substantial technical com-
plexities and costs.[12] To effectively attenuate quantum back-
action noise and surpass the standard quantum limit (SQL), a
diverse array of quantum non-demolitionmeasurementmethod-
ologies has been proposed, including variational readout,[9,13]

stroboscopic measurements,[14,15] two-tone measurements,[16–18]
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and the optical spring effect.[19] In tandem with these ad-
vancements, innovative strategies have emerged for generating
frequency-dependent squeezed states without reliance on exter-
nal filter cavities, capitalizing on the frequency-dependent prop-
erties of EPR-entangled states to achieve optimal detuning.[20]

Additional studies have demonstrated the creation of two-mode
frequency-squeezed vacuum states via EPR entanglement,[21,22]

with the squeezing angle meticulously controlled by an auxil-
iary coherent locking field.[23,24] Some approaches further ex-
ploit detuned optical parametric oscillators (OPOs) to gener-
ate frequency-dependent squeezing,[25] wherein the frequency-
dependent Wigner function[26] is reconstructed through quan-
tum tomography, revealing its rotational attributes. These
methodologies have yielded promising results in reducing quan-
tum noise. In contrast, our research focuses on silicon nitride
(Si3N4) microring resonators to generate EPR-entangled pairs
and explore frequency-dependent squeezing.
Our research leverages recent advancements in integrated

photonics, particularly within the domain of quantum technolo-
gies. Notably, successful single-photon detection on Si3N4 plat-
forms accentuates the potential for generating high-fidelity quan-
tum photons.[27] Additionally, squeezed light has been realized
through sub-threshold spontaneous four-wave mixing (FWM) in
silicon nitride microring resonators,[28] while narrowband pho-
ton pairs have been generated in silicon-on-insulator micro-ring
cavities.[29] A fully interconnected multi-user quantum network
has been actualized, comprising six photon pairs.[30,31] Moreover,
cutting-edge techniques for the representation and verification of
multimode continuous-variable quantum states, alongside mul-
tiplexing methodologies spanning time, frequency, and spatial
dimensions,[32,33] are integral for the scalable generation of en-
tangled states. These breakthroughs, coupled with investigations
into nonlinear phenomena within soliton networks and multi-
mode lattices,[34] underscore the growing prominence of inte-
grated Kerr quantum optical frequency combs in quantum in-
formation processing and metrology. Silicon nitride Microring
Resonators mark a significant advancement over conventional
OPOs based on bulk nonlinear crystals such as periodically-
poled potassium titanyl phosphate.[21] Their chip-scale miniatur-
ization, tunable dispersion, and inherent compatibility with inte-
grated photonic platforms address key limitations of traditional
free-space OPOs, offering superior scalability, efficiency, and
compactness. The small waveguide cross-section facilitates the
simultaneous generation of multiple two-mode squeezed states,
while advanced CMOS fabrication technologies enable precise
control of both coupling coefficients and dispersion properties.
These features are further enhanced by the material properties
of silicon nitride, including ultra-low optical loss, a broad trans-
parency window, and seamless integration with existing CMOS
infrastructure. Collectively, these attributes position silicon ni-
tride Microring Resonators as a premier platform for investi-
gating frequency-dependent quantum squeezing with unprece-
dented precision.
In this work, we introduce a sophisticated platform[35] based

on integrated silicon nitride micro-ring resonators, engineered
for precise dispersion and coupling control, facilitating the gen-
eration of EPR-entangled frequency combs with no fewer than
12 channels (six pairs), each capable of yielding frequency-

dependent single-mode squeezed states. Furthermore, we pro-
vide an exhaustive analysis of entanglement distribution across
multiple modes using bipartite entanglement criteria. Two dis-
tinct silicon nitride micro-ring cavity configurations are em-
ployed to simulate normal and anomalous dispersion condi-
tions, respectively. Our focus is directed toward the study of
frequency-dependent squeezingmediated by EPR entanglement,
wherein we determine the optimal readout angles for achiev-
ing maximal squeezing at various observation frequencies. Ul-
timately, we delineate the intricate relationships between entan-
glement bandwidth, threshold power, and quality factor. This ap-
proach affords unparalleled control over quantum noise, which
could significantly enhance the sensitivity of displacement mea-
surements, such as those used in gravitational wave detectors,
and holds considerable promise for expanding the utilization of
fully integrated entangled resources in the realm of quantum
metrology.
The organization of this paper is as follows: Section 2 pro-

vides a detailed overview of the simulation model for the in-
tegrated silicon nitride microresonator, coupled with an intro-
duction to the principles of dispersion and coupling engineer-
ing. In Section 3, we formulate a theoretical framework for four-
wave mixing within the microresonator, grounded in OPO the-
ory, and establish the quantum entanglement criteria for signal
and idler modes. This section also demonstrates the generation
of single-mode squeezed states using EPR-entangled pairs. Sec-
tion 4 delves into the extraction and application of critical pa-
rameters within the simulation, examining their influence on
entanglement dynamics and noise suppression. A comprehen-
sive analysis of entanglement features and frequency-dependent
squeezing is presented, highlighting the distinctions between
normal and anomalous dispersion. This section culminates in
the presentation of correlation curves linking the intrinsic qual-
ity factor Q0 and the loaded quality factor Q to entanglement
bandwidth and threshold power. Finally, Section 5 offers a suc-
cinct summary of the research findings, including the analysis of
frequency-dependent squeezing via a silicon nitride-based EPR-
entangled quantum frequency comb (QFC) under varying disper-
sion conditions.

2. Simulation Model of Microring Resonators

The pump light in the bus waveguide is coupled to the ring
waveguide through resonant constructive interference, facilitat-
ing the spontaneous FWM process that generates a quantum op-
tical frequency comb. This third-order nonlinear interaction, il-
lustrated in Figure 1, follows the principles of energy conserva-
tion. The continuous-wave pump light (Ωp) initiates FWM, result-
ing in the generation of signal (Ωs) and idler (Ωi) modes, which
redistribute energy across different modes.

2Ωp = Ωs + Ωi (1)

Momentum conservation is typically expressed by the following
equation:

2k⃗p − k⃗s − k⃗i = 0⃗ (2)
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Figure 1. a) A schematic illustration of the third-order nonlinear process
involved in generating Kerr optical frequency combs. b) Momentum con-
servation as it applies to the four-wave mixing process. c) Energy conser-
vation in the context of four-wave mixing.

Figure 2a illustrates a typicalmicroresonator configuration fea-
turing an additional coupling structure, designed in accordance
with OPO theory. The on-chip microring resonator is composed
of a ring waveguide and a bus waveguide, with silicon nitride rib
waveguides embedded in a silicon dioxide cladding. The coupling
region and its corresponding input-output schematic are shown
in Figure 2b. As shown in Figure 2a, the optical field propagates
along the x-axis, and the effective cross-sectional area Aeff of the
ring waveguide[36] is described by Equation (3). This area quan-
tifies the extent to which the optical field is confined within the
resonator. A smaller effective mode area indicates stronger con-
finement of the optical field by the resonator.

Aeff =

(
∬

+∞

−∞
|F(y, z)|2 dy dz)2

∬
+∞

−∞
|F(y, z)|4 dy dz (3)

where F(y, z) represents the modal distribution in silicon nitride
and silicon dioxide, and we presume that this distribution re-
mains time-invariant within the resonator.
The geometry of the coupling region directly affects the ring-

bus coupling rate, facilitating the extraction of this rate and pro-
viding insight into the resonator’s input-output characteristics.
In this analysis, we focus exclusively on the fundamental TE

mode. The Lorentzian profile of the cavity resonance is depicted
in Figure 3 (shaded area). Figure 3b,c shows enlarged views un-
der anomalous and normal dispersion conditions, respectively.
The resonances shift across the spectrum due to the frequency
dependence of thematerial’s refractive index n(𝜔). Tomodify cav-

Figure 2. On-chip add-dropmicroring resonator. a) A 3D illustration of the
resonator, with R representing the mean radius of the ring waveguide. b)
A close-up of the coupling region along with the input-output schematic.
Here, 𝜅0 denotes the intrinsic loss coupling rate, while 𝜅ex indicates the
ring-to-bus coupling rate. The parameters t1 and t2 are related by |t1|2 +|t2|2 = 1. Note that the bus waveguides do not have to be straight.

ity parameters such as detuning, dispersion, coupling, tempera-
ture, and loss rate within our design platform, a solid theoretical
foundation is required.

2.1. Detuning, Dispersion and Temperature

This subsection delves into the intricacies of detuning and disper-
sion. We introduce the relative mode number l (l ∈ ℤ) to identify
modes close to the pump mode 𝜔0 (l = 0). A Taylor expansion is
applied to the resonant modes in the vicinity of 𝜔0:

𝜔l = 𝜔0 + D1l +
D2

2
l2 +⋯ = 𝜔0 +

∞∑
n=1

Dn
ln

n!
(4)

Here, we define D1 = 2𝜋𝜈f , where 𝜈f represents the free
spectral range (FSR). The parameter D2 governs group velocity
dispersion,[37] with D2 > 0 corresponding to anomalous disper-
sion and D2 < 0 indicating normal dispersion. Higher-order dis-
persion terms are disregarded, i.e., Dn = 0 for n ≥ 3. The inte-
grated dispersion is given by: Dint = 𝜔l − 𝜔0 − D1l,

[38] which is
well approximated by a quadratic polynomial around 𝜔0. A com-
parative analysis of anomalous and normal dispersion is per-
formed for silicon nitride microring resonators.
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Figure 3. a) Resonances with anomalous dispersion. The solid lines indicate the evenly spaced positions of the output comb lines, while the gray slashes
mark the positions of the resonances under anomalous dispersion. b) An enlarged subgraph. For mode 0, the relationship between the laser frequency
Ω0 (or Ωp), cold-resonance frequency 𝜔0, loaded linewidth 𝜅, and the normalized cold cavity pump detuning is expressed as 𝜎c = 𝜔0 − Ω0. For mode
+l, the normalized cold cavity detuning is Δi,+l = 𝜔+l − Ωi,+l, with the assumption that all modes share the same linewidth 𝜅. c) Enlarged view for the
case of normal dispersion.

Figure 4. a) Profile of rib waveguides under anomalous dispersion. b) Profile of rib waveguides under normal dispersion. c) Dispersion simulation curve
under anomalous dispersion.Here, l represents the relative mode number. d) Dispersion simulation curve under normal dispersion.

Adv. Quantum Technol. 2024, 2400473 © 2024 Wiley-VCH GmbH2400473 (4 of 16)

http://www.advancedsciencenews.com
http://www.advquantumtech.com


www.advancedsciencenews.com www.advquantumtech.com

Figure 5. a) The spectral decomposition of EPR-entangled beams, as referenced in Figure 3. b) Quantum statistics of the signal and idler beams.

In this investigation, we presume a homogeneous tempera-
ture distribution throughout themicroring resonator at any given
instant. The temperature-induced shift in resonance frequencies
at a temperature T is expressed as:

𝜔l(T) = 𝜔l(T0)

[
1 −

(
𝛼n
neff

+ 𝛼L

)
ΔT

]
(5)

where ΔT = T − T0 denotes the deviation from the reference
temperature T0 = 20 ◦C. The thermo-optic coefficient 𝛼n and the
thermal expansion coefficient 𝛼L for Si3N4 are 2.45 × 10−5 ∕◦C
and 3.30 × 10−6 ∕◦C, respectively.[39,40] At the frequency 𝜔0, the
effective refractive index is neff = 1.836 under anomalous disper-
sion, while it is neff = 1.702 under normal dispersion.
For simplification, we neglect the pump power, assuming its

contribution to the frequency shift induced by nonlinear effects
is negligible. Consequently, only the thermally induced shift in
resonance frequencies is considered. The detuning of the pump
frequency at temperature T is given by:

𝜎c = 𝜔0(T) − Ω0(T) (6)

The comb lines of QFCs remain evenly spaced, independent
of temperature, and are unaffected by Dint:

Ωl(T) = Ω0(T) + D1l (7)

At the reference temperatureT0, the resonance frequencies are
expressed as:

𝜔l(T0) = 𝜔0(T0) + D1l + D2
l2

2
(8)

From Equations (5)– (8), the normalized cold cavity detuning
Δc,l for mode l is:

Δc,l = 𝜔l(T) − Ωl(T) = 𝜎c +
D2

2
l2 − 𝛿T (9)

where 𝛿T =
(
D1l +

D2

2
l2
)(

𝛼n

n0
+ 𝛼L

)
ΔT . This equation estab-

lishes the relationship between detuning, dispersion, and intra-
cavity temperature.

2.2. Coupling, Loss, and Gap

This section delves into the intricate relationship between input-
output parameters, such as the coupling rate (𝛾) and loss rate
(μ), and the fundamental intrinsic cavity properties, including the
coupling coefficient (𝜅) and the quality factor. The resonator loss
is conceptualized as an effective phantom channel, as outlined
in refs. [41, 42], leveraging the transmission characteristics of a
beam splitter to ensure that the coupling and loss rates fulfill the
requisite conditions 𝛾 ≪ 𝜈f and μ ≪ 𝜈f , where 𝜈f denotes the free
spectral range. As depicted in Figure 2b, the coupling rate is rep-
resented as: 𝛾 = |t2|2𝜈f = (1 − |t1|2)𝜈f , and the loss rate simplifies
to: μ = 𝛼L𝜈f , where L = 2𝜋R is the circumference of the micror-

ing resonator, and R = Din+Dout

4
is the radius, with Din and Dout
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Figure 6. The variation of the intracavity pump mode amplitude with respect to the injected pump amplitude in our QFC. a) Under anomalous
dispersion(𝜎c = 8 GHz). b) Under normal dispersion (𝜎c = 18 GHz).

representing the inner and outer diameters of the microring, re-
spectively. Furthermore, the absorption coefficient 𝛼, expressed
in units of m−1, is approximately given by: 𝛼 ≈ f0

Q0⋅R⋅𝜈f
, where f0

(Hz) denotes the resonance frequency.
Next, we set b2 = 0 and systematically vary the gap, defined as

the distance between the ring waveguide and the bus waveguide,
to scan the transmission from the added port to the through port
(|t1|2). The ratio r = 𝛾

μ
quantifies the relationship between the

coupling rate (𝛾) and the internal loss rate (μ). When r < 1, this
signifies under-coupling; r > 1 corresponds to over-coupling;
and r = 1 represents the condition of critical coupling. In our
simulation, we prioritize over-coupled configurations, which, al-
though leading to a reduction in intracavity power, facilitating
more efficient power extraction from the resonator.
For resonators employed in the generation of quantum opti-

cal frequency combs, the quality factor Q is a pivotal parameter.
The Q-factor governs the resonator’s ability to achieve substan-
tial field enhancement and reflects the microcavity’s efficiency in
storing optical energy. It is mathematically expressed as:

Q = 𝜔0𝜏p =
𝜔0

𝜅
(10)

Here, 𝜔0 represents the central frequency of the resonance
peak, 𝜏p denotes the photon lifetime, and 𝜅 is the full width at
half maximum of the resonance peak.[43] The loss coupling rate,
𝜅0 (in rad/s), is given by

𝜅0 =
𝜔0

Q0
≈

c𝛼n
ng

= μ (11)

where ng is the group refractive index of silicon nitride near Ω0.
The total loss rate is expressed as

𝜅 = 𝜅0(1 + r) = Γ (12)

and the ring-bus coupling rate 𝜅ex is given by

𝜅ex = 𝜅 − 𝜅0 =
𝜔0

Qex
= 𝛾 (13)

where Qex denotes the external quality factor.
[44] The total quality

factor Q satisfies the following relationship:

1
Q

= 1
Q0

+ 1
Qex

(14)
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Figure 7. The variation of the intracavity pump mode amplitude with re-
spect to the injected pump amplitude for the fourth mode. a) Under
anomalous dispersion(𝜎c = 8 GHz). b) Under normal dispersion (𝜎c =
18 GHz).

Thus, the gap can be directly linked to Qex via the coupling
ratio r.

2.3. Actual Simulation

Our objective is to design a dispersion-flattened waveguide
to mitigate phase mismatch in the FWM process. By tuning
the parameters of the silicon nitride integrated microcavity
structure–such as its geometry, size, and the selection of non-
linear materials–the dispersion characteristics can be adjusted to
achieve phase matching. Dispersion engineering is essential for
generating a larger number of operationally entangled state pairs.
Optimal phase matching conditions are ensured by fine-tuning
Dint to approach zero over the broadest possible spectral range.

Δk =
2𝜔pn(𝜔p)

c
−

𝜔sn(𝜔s)
c

−
𝜔in(𝜔i)

c
(15)

We utilize COMSOL Multiphysics to model the waveguide’s
overall geometry and the integrated dispersion profile. A fifth-
order polynomial fitting procedure is employed to extract param-
eters that exhibit a close alignment with the integrated dispersion
Dint, as illustrated in Figure 4. In addition, Lumerical FDTD sim-
ulations are conducted to investigate the relationship between
the gap and the coupling coefficient. Assuming an intrinsic qual-
ity factor of Q0 = 106, we compute 𝜅0 = 1.21 × 109. With a cou-
pling ratio r = 𝛾

μ
= 1.222, which corresponds to an over-coupled

regime, the external quality factor is subsequently determined
as Qex = Q0∕r = 8.18 × 105. The gap is calculated to be 490 nm
based on the results from Lumerical FDTD simulations.
For both anomalous and normal dispersion regimes, we de-

sign two distinct microcavity structures, each capable of generat-
ing classical optical solitons. The waveguide geometry is metic-
ulously selected to ensure optimal dispersion characteristics for
the specified regime, facilitating the generation of multiple EPR
entangled pairs. Figure 4a illustrates the micro-ring structure
under anomalous dispersion conditions, with a radius of R =
23 μm, waveguide and bus widths of WR1 = WB1 = 1610 nm,
heights of H1 = h1 = 800 nm, and an angle of 𝜃 = 90◦. Simula-
tion results for this configuration yield a free spectral range 𝜈f of
989.592 GHz, a mode 0 frequency f0 of 193.251 THz, a second-
order dispersion coefficient D2 of 1.435 × 2𝜋 × 107 rad s−1, and
an effective area Aeff of 1.10 μm2. Figure 4b depicts the micro-
ring structure under normal dispersion conditions, with param-
eters: radius R = 23 μm, waveguide and bus widths of WR2 =
WB2 = 1710 nm, heights ofH2 = h2 = 400 nm, and the same an-
gle 𝜃 = 90◦. For this configuration, the simulation results show
a free spectral range 𝜈f of 1019.553 GHz, a mode 0 frequency
f0 of 193.797 THz, a second-order dispersion coefficient D2 of
−5.676 × 2𝜋 × 108 rad s−1, and an effective areaAeff of 0.968 μm2.

3. EPR Entanglement Dynamics

In this section, the quantum dynamics of the resonator are elu-
cidated, building upon the theoretical framework delineated in
Section 2.

3.1. Hamiltonian

The system Hamiltonian encapsulates the optical nonlinear dy-
namics within the quantum regime, with each resonant mode
represented by an annihilation operator âj, where j = p, s, i. In the
context of FWM, the system’s total energy is partitioned into the
free Hamiltonian Ĥ0 and the nonlinear Hamiltonian ĤNL, as:

Ĥ = Ĥ0 + ĤNL (16)

The free Hamiltonian Ĥ0 is expressed as:

Ĥ0 = ℏ
(
𝜔pâ

†
pâp + 𝜔sâ

†
s âs + 𝜔iâ

†
i âi

)
(17)

For the FWM process, the nonlinear Hamiltonian[45,46] is gener-
ally decomposed as:

ĤNL = ĤSPM + ĤXPM + ĤFWM (18)
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Figure 8. a) The four distinct stages of the fourthmode under anomalous dispersion. b) Entanglement distribution in the Ain − f plane under anomalous
dispersion (𝜎c = 8 GHz, r = 1.222). c) The four stages of the fourth mode under normal dispersion. d) Entanglement distribution in the Ain − f plane
under normal dispersion (𝜎c = 18 GHz, r = 1.222).

The terms ĤSPM, ĤXPM, and ĤFWM correspond to the self-phase
modulation (SPM), cross-phase modulation (XPM), and FWM
processes, respectively. These nonlinear phenomena fundamen-
tally govern the oscillatory dynamics, noise characteristics, and
entanglement properties of the system. Among these effects,
FWM plays a pivotal role in facilitating energy exchange between
the resonant modes. The nonlinear Hamiltonian ĤNL is formu-
lated as:

ĤNL = − ℏ𝜂
[1
2

(
â†pâ

†
pâpâp + â†s â

†
s âsâs + â†i â

†
i âiâi

)
+ 2

(
â†pâ

†
s âpâs + â†pâ

†
i âpâi + â†s â

†
i âsâi

)
+
(
â†s â

†
i âpâp + â†pâ

†
pâsâi

)] (19)

The nonlinear coupling coefficient 𝜂 is bounded from below
as: 𝜂 = ℏ𝜔2

0cn2∕(n
2
0Veff ). This parameter quantifies the frequency

shift per photon induced by the 𝜒 (3) nonlinearity.[47] Here, c de-
notes the speed of light in a vacuum, and n2, the nonlinear re-
fractive index of Si3N4, is intrinsically correlated with the mate-
rial’s linear refractive index, n0. In our Si3N4 microresonator, n2
is specified as 2.6 × 10−19 m2W−1. The effectivemode volumeVeff
is rigorously defined through the integral form:

Veff =
∫ n20|F(x, y, z)|2dV ∫ |F(x, y, z)|2dV

∫ n20|F(x, y, z)|4dV (20)
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Figure 9. a) The four distinct stages of the third mode under anomalous dispersion. b) Entanglement distribution in the Ain − f plane under anomalous
dispersion (𝜎c = 8 GHz, r = 1.222). c) The four stages of the fourth mode under normal dispersion. d) Entanglement distribution in the Ain − f plane
under normal dispersion (𝜎c = 18 GHz, r = 1.222).

For a microring resonator operating in whispering-gallery-
mode (WGM), an approximate upper bound for Veff can be for-
mulated as Veff ≈ Aeff ⋅ 2𝜋R.

3.2. Heisenberg–Langevin Equations

The Heisenberg–Langevin equations[48] integrate the Heisen-
berg equations of motion with Langevin noise terms to capture
the dynamics of open quantum systems under the influence of
quantum noise. The resulting formalism is expressed as:

dâj
dt

= − i
ℏ
[âj, Ĥ] − 𝜅

∑
j

âj +
√
2𝜅ex

∑
j

âinj

+
√
2𝜅0

∑
j

âlossj , j = p, s, i.

(21)

Here, the modes under consideration are presumed to exhibit
analogous field profiles, characterized by a unified total loss rate
𝜅, which comprises the intrinsic loss rate 𝜅0 and the coupling rate
between the ring and buswaveguides, 𝜅ex, satisfying 𝜅 = 𝜅0 + 𝜅ex.
The annihilation operators âin and âloss represent the resonator’s
input and loss modes, respectively. In this framework, the loss
modes are assumed to be in vacuum states, with the incident
signal and idler modes similarly treated as vacuum states. The
expectation value of the input pump mode is expressed as:⟨
âinp (t)

⟩
= Ain =

√
Pin
ℏΩ0

(22)

where Pin (Watt) is the pump laser power in the bus waveguide.
By applying the rotating wave approximation (RWA),

where âje−i𝜔j t substitutes âj, the Heisenberg–Langevin
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equations governing the dynamics of the pump, signal, and
idler modes are formulated as:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dâp
dt

= i𝜂
(
â†pâpâp + 2â†s âsâp + 2â†i âiâp + 2â†pâsâi

)
− 𝜅âp − i𝜎câp +

√
2𝜅exâ

in
p +

√
2𝜅0â

loss
p

dâs
dt

= i𝜂
(
2â†pâpâs + â†s âsâs + 2â†i âiâs + â2pâ

†
i

)
− 𝜅âs − iΔ−lâs +

√
2𝜅exâ

in
s +

√
2𝜅0â

loss
s

dâi
dt

= i𝜂
(
2â†pâpâi + 2â†s âsâi + â†i âiâi + â2pâ

†
s

)
− 𝜅âi − iΔ+lâi +

√
2𝜅exâ

in
i +

√
2𝜅0â

loss
i

(23)

where Δ−l and Δ+l denote the normalized cold cavity detunings
associated with the signal and idler modes, respectively. Notably,
𝜅ex and 𝜅0 remain constant, independent of the mode number l.

3.3. Steady-State Equations

We employ a linearization technique by representing each field
operator âj as the sum of its steady-state mean value 𝛼j and
a fluctuation term 𝛿âj, such that âj = 𝛼j + 𝛿âj. In the steady-
state regime, 𝛼j assumes a constant value, allowing us to set

𝛿âj = 0 and
d𝛼j
dt

= 0, thereby yielding the steady-stateHeisenberg–
Langevin equations. Under these assumptions, the input fields
for the signal and idler modes, as well as the loss modes for the
pump, signal, and idler, are considered to be in a vacuum state,
resulting in 𝛼ins = 𝛼ini = 𝛼lossj = 0.
Without restricting the generality, we adopt the phase of the

external pump as the reference. This leads to the following defi-
nitions: 𝛼j = Aje

i𝜃j , 𝛼inp = Ainei𝜃in , Θ = 𝜃s + 𝜃i − 2𝜃p, 𝜓 = 𝜃in − 𝜃p.
For the sake of simplicity, we set As = Ai = A and Δ+l = Δ−l = Δ.
The external pump power is defined as F =

√
2𝛾𝜂

ℏΩ0Γ3
Pin,

[49] with

Ain = F
√

Γ3

2𝛾𝜂
. Leveraging these parameters, we derive the subse-

quent expressions:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

A4
p = 1 +

(
𝜎c −

D3

2
− 2A2

p − 3A2
)2

F2 = A2
p

(
1 + 2A2

A2p

)2

+A2
p[𝜎c − A2

p − 2A2

A2p

(
𝜎c −

D3

2
− 3A2

)
]2

sin(Θ) = 1
A2p

cos(Θ) = 1
A2p

(
Δ − 3A2 − 2A2

p

)
sin(𝜓) = Ap

F

[
𝜎c − A2

p − 2A2

A2p

(
−3A2 − D3

2
+ 𝜎c

)]
cos(𝜓) = Ap

F

(
1 + 2A2

A2p

)

(24)

Equation (24) encompasses several critical variables: Ap, A
in, A,

𝜎c, and Δ. By assigning specific numerical values to any two of
these parameters, a numerical relationship can be derived for the

remaining three. Consequently, two of the remaining variables
can be expressed as functions of the third.

3.4. Quantum Fluctuations

To scrutinize the quantum characteristics of the signal and idler
modes, we derive the quantum fluctuation equations from Equa-
tion (23). Since the steady-state solutions have beenmeticulously
established, the fluctuation equations are extracted by subtract-
ing the steady-state components from Equation (23). In this anal-
ysis, the pumpfield is treated as a classical parameter, thereby dis-
regarding fluctuations in the pump mode (𝛿âp = 0), with higher-
order fluctuation terms omitted for conciseness.
We introduce a fluctuation vector for the signal and idler

modes as follows:

𝛿Â =
(
𝛿âse

−i𝜃s , 𝛿â†s e
i𝜃s , 𝛿âie

−i𝜃i , 𝛿â†i e
i𝜃i
)T

(25)

where 𝜃j denotes the phase of the steady-state mean value 𝛼j =
Aje

i𝜃j . The temporal evolution of the fluctuations 𝛿âj is governed
by the following set of linearized equations:

d𝛿Â
dt

= Ma ⋅ 𝛿Â + T in
a ⋅ 𝛿Âin + T loss

a ⋅ 𝛿Âloss (26)

where T in
a = diag

(√
2𝜅ex,

√
2𝜅ex,

√
2𝜅ex,

√
2𝜅ex

)
, T loss

a =

diag
(√

2𝜅0,
√
2𝜅0,

√
2𝜅0,

√
2𝜅0

)
. The matrix Ma originates

from the linearization procedure, with its components deter-
mined by the mean field values and the detuning parameters.
The frequency-domain evolution of these fluctuations can be

captured through a Fourier transform. This transformation, com-
bined with the resonator’s input-output relations âout = −âin +√
2𝜅exâ, offers a comprehensive description of the system’s be-

havior:

𝛿Âout(𝜔) = −𝛿Âin + Ta𝛿Â

= [Ta

(
i𝜔I −Ma

)−1
T in
a − I] ⋅ 𝛿Âin

+ Ta

(
i𝜔I −Ma

)−1
T loss
a ⋅ 𝛿Âloss

(27)

where Ta = diag
(√

2𝜅ex,
√
2𝜅ex,

√
2𝜅ex,

√
2𝜅ex

)
, and I is the

identity matrix.
Thus, the output spectral noise density matrix can be ex-

pressed as:

Sa(𝜔) =
⟨
𝛿Âout(𝜔)𝛿Âout,T(−𝜔)

⟩
= [Ta

(
i𝜔I −Ma

)−1
T in
a − I] ⋅Mc

⋅ [Ta

(
−i𝜔I −Ma

)−1
T in
a − I]T + Ta

(
i𝜔I −Ma

)−1
⋅ T loss

a ⋅Mc ⋅ [Ta

(
−i𝜔I −Ma

)−1
T loss
a ]T

(28)

where the matrixMc =
⎛⎜⎜⎜⎝
0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎞⎟⎟⎟⎠.
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Figure 10. The relationship diagram between the entanglement degree Cs, the observation frequency f (where f = ΔΩ
2𝜋

), and the readout angle,

showing frequency-dependent squeezing via Einstein–Podolsky–Rosen entanglement. a) Under anomalous dispersion (𝜎c = 8 GHz, r = 1.222, Ain =
1 × 1010 Vm−1, T = 100 ◦C). b) Under normal dispersion (𝜎c = 18 GHz, r = 1.222, Ain = 4 × 1010 Vm−1, T = 100 ◦C). c) Under normal dispersion
(𝜎c = 18 GHz, r = 1.222, Ain = 4 × 1010 Vm−1, T = 110 ◦C). d) Under normal dispersion (𝜎c = 18 GHz, r = 1.222, Ain = 4 × 1010 Vm−1, T = 90 ◦C).

3.5. EPR Entanglement and Criteria

To quantitatively assess the entanglement between the signal and
idlermodes, we employ the criterion from ref. [50] to compute the
entanglement degree Cs. The amplitude x̂j and phase ŷj quadra-
ture operators for each mode j = s, i are defined as functions of
the annihilation and creation operators âj and â

†
j :
[51]

x̂j =
â†j + âj√

2
, ŷj =

iâ†j − iâj√
2

(29)

By rotating the detection angles of the signal and idler beams (𝜃s,
𝜃i), we can obtain:

(
𝛿x̂s, 𝛿x̂i, 𝛿ŷs, 𝛿ŷi

)T = P
(
𝛿âs, 𝛿â

†
s , 𝛿âi, 𝛿â

†
i

)T
(30)

where P = 1√
2

⎛⎜⎜⎜⎝
e−i𝜃s ei𝜃s 0 0
0 0 e−i𝜃i ei𝜃i

−ie−i𝜃s iei𝜃s 0 0
0 0 −ie−i𝜃i iei𝜃i

⎞⎟⎟⎟⎠.

Introduce the sum and subtraction basis:

x̂± =
x̂s ± x̂i√

2
, ŷ± =

ŷs ± ŷi√
2

(31)

and we obtain the fluctuation vector

𝛿X̂± =
(
𝛿ŷ+, 𝛿x̂+, 𝛿ŷ−, 𝛿x̂−

)T = Q
(
𝛿x̂s, 𝛿x̂i, 𝛿ŷs, 𝛿ŷi

)T
(32)

where Q = 1√
2

⎛⎜⎜⎜⎝
0 0 1 1
1 1 0 0
0 0 1 −1
1 −1 0 0

⎞⎟⎟⎟⎠.
The spectral noise density matrix SX̂±

(𝜔) is calculated by:

SX̂±
(𝜔) =

⟨
𝛿X̂±(𝜔)𝛿X̂

T
±(−𝜔)

⟩
= Q ⋅ P ⋅ Sa(𝜔) ⋅ (Q ⋅ P)T (33)

where Sa(𝜔) is defined in Equation(24).
The Duan criterion has the following form:[52]

Cs = (Δx̂−)2 + (Δŷ+)2 − |G| ≥ 0 (34)

where (Δx̂−)2 = SX̂±
(𝜔)(4, 4), (Δŷ+)2 = SX̂±

(𝜔)(1, 1), and G =
cos(𝜃s − 𝜃i). If the Duan criterion is not satisfied, i.e., Cs < 0, the

Adv. Quantum Technol. 2024, 2400473 © 2024 Wiley-VCH GmbH2400473 (11 of 16)

http://www.advancedsciencenews.com
http://www.advquantumtech.com


www.advancedsciencenews.com www.advquantumtech.com

bipartite modes exhibit entanglement. A reduced value of Cs sig-
nifies an enhanced degree of quantum entanglement.
The condition for optimizing the entanglement degree, as

determined through simulation, corresponds to the optimal
quadrature of the signal mode’s single-mode squeezed state,
which simultaneously minimizes quantum back-action noise to
the maximal extent. Hence, this EPR-entangled quantum optical
frequency comb (QFC) platform can be harnessed to effectuate
substantial noise attenuation.
As illustrated in Figure 5, the signal and idler beams man-

ifest EPR-entangled sidebands. Initially, the quantum statistics
of both beams adhere to a thermal state distribution, resulting
in substantial quantum noise. However, by detecting the idler
beam at a specific angle 𝜃i, the quantum statistics of the signal
beam undergo instantaneous squeezing at an angle −𝜃i,[20] fa-
cilitating the bypassing of SQL. We introduce the readout an-
gle 𝜑 = 𝜃s − 𝜃i, which provides a framework for further prob-
ing frequency-dependent squeezing through EPR entanglement,
specifically in relation to the readout angle and observation fre-
quency.

4. Entanglement and Squeezing Analysis

In this section, we undertake a thorough investigation of signal-
idler two-mode entanglement, leveraging simulation results de-
rived from practical parameters. By utilizing the two-mode
squeezed state, we generate a single-mode squeezed state in the
signal mode, subsequently analyzing its frequency-dependent
squeezing characteristics. Furthermore, a comparative analysis
is conducted to evaluate the entanglement properties under both
normal and anomalous dispersion conditions.

4.1. Simulation Process

The primary computational tool employed in this section is Wol-
framMathematica, which operates under a temperature gradient
of ΔT = 80 ◦C, thereby ensuring the simulation temperature T
is sustained at 100 ◦C. The simulation procedure unfolds as fol-
lows: First, the structural parameters of the microring resonator
are delineated tomodel the effective refractive index neff (𝜔). Next,
the central frequency of the pump light (Ω0 ≈ 1.21 × 1015 rads−1)
is determined, followed by the calculation of the resonance mode
and the dispersion parameter Dint. The subsequent phase entails
modeling the coupling interactions between the microring
resonator and the bus waveguide, which facilitates the extrac-
tion of pivotal parameters such as the coupling coefficient 𝜅ex.
Finally, the entanglement between the signal and idler modes
is rigorously evaluated using the criterion Cs < 0, and a detailed
exploration of frequency-dependent squeezing is conducted.
As the comb generation process nears the threshold of the
optical parametric oscillator (OPO), the linearization approach
discussed in Section 3 becomes insufficient, as higher-order
fluctuations impose a considerable impact on the entanglement
characteristics.[53,54] Consequently, the entanglement analysis
presented in this section is confined to conditions well removed
from the threshold. Ultimately, we investigate the interplay
between the quality factor–comprising both the intrinsic quality
factor Q0 and the loaded quality factor Q–and the entanglement
bandwidth and threshold power.

4.2. EPR Entangled QFCs

Utilizing our design platform, we have successfully generated
EPR-entangled frequency combs comprising 12 channels (equiv-
alent to 6 pairs), as demonstrated in Figure 6. In the case of
anomalous dispersion, we set 𝜎c = 8GHz, whereas for normal
dispersion, 𝜎c = 18GHz. Furthermore, our QFC operates under
the effects of hysteresis, as detailed in refs. [35, 55]
In Figure 6, the S-shaped brown curve depicts the frequency

modes below the OPO threshold, where the spontaneous FWM
process is governed by vacuum fluctuations. In contrast, the vi-
brant bifurcation structure represents the modes above the OPO
threshold, where the pump signal is sufficiently intense to induce
coherent interactions via stimulated FWM. Panel (a) of Figure 6
illustrates the scenario of anomalous dispersion, while panel (b)
presents the case of normal dispersion.
For the case of l = 4, the solutions to Equation (20) are depicted

in Figure 7. In stages I and IV, the orange and red curves denote
conditions where the system remains below the OPO threshold,
resulting in null amplitudes for both the signal and idler modes.
During these stages, only the amplitude of the pump mode is
modulated by the injected pump power, signifying that the sys-
tem’s dynamics are predominantly governed by the pump in
steady-state conditions. Conversely, stages II and III, represented
by the blue and green curves, correspond to scenarios where the
system exceeds the OPO threshold. In these stages, the ampli-
tudes of all intracavity modes exhibit a heightened sensitivity to
variations in the pump power, underscoring the nonlinear char-
acteristics of the system. The intricate interactions between the
intracavity modes and the injected pump mode are elaborated
upon in ref. [49]. Additionally, a gray curve delineates regions
below the OPO threshold, corresponding to unstable solutions,
which are excluded from our simulation analysis due to their in-
herent instability.
The six pairs of EPR-entangled modes that we have generated

are all conducive to entanglement analysis. However, in light
of the similarity of the results across various modes, we will
concentrate our investigation on the fourth and third modes
(l = 4 and l = 3) for greater clarity. These modes can be de-
lineated into four discrete stages, as illustrated in Figures 8a
and 9a. Stages I and IV correspond to a QFC operating sub-
threshold, where bistability emerges, implying that each stage
can stabilize into divergent states depending on the detun-
ing process applied. In contrast, stages II and III correspond
to a QFC operating above the threshold. By fine-tuning the
angles 𝜃s and 𝜃i to identify the inflection point of Cs, we can
comprehensively chart the entanglement distribution within
the QFC.
The entanglement distribution as a function of the injected

pump amplitude Ain and observation frequency f is depicted
in Figures 8b and 9b, with a coupling rate of r = 1.222 and a
pump detuning of 𝜎c = 8 GHz for anomalous dispersion. Sim-
ilarly, Figures 8c and 9c illustrate the four stages under normal
dispersion, and the corresponding entanglement distribution is
shown in Figures 8d and 9d, maintaining the same coupling rate
of r = 1.222 and a pump detuning of 𝜎c = 18 GHz. Our obser-
vations reveal that an increase in the injected pump amplitude
leads to a higher peak in the entanglement degree during stage
I. The simulation results also show that stages I and IV exhibit
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Figure 11. The graph depicts the relationship between the offset frequency fe and three factors: temperature T, second-order dispersion coefficient D2,
and intrinsic quality factor Q0. For each analysis, only one parameter is varied while the others are maintained at their ideal values. The three curves
converge at the point where fe = 0, signifying the conditions under which all parameters are at their optimal values.

a single minimum, while stages II and III have two distinct
minima. Comparing the entanglement distribution patterns
for anomalous and normal dispersion indicates that, under
normal dispersion, the optimal observation frequency tends
to shift upward. By fine-tuning the injected pump amplitude
and observation frequency, it is possible to achieve maximum
entanglement and significant noise suppression.

4.3. Frequency-Dependent Squeezing

To replace narrowband filter cavities and achieve a cost-effective
and efficient implementation of frequency-dependent squeezing,
we can leverage the six two-mode squeezed states generated in
the previous simulation to prepare a single-mode squeezed state
in the signal mode (simulation results are presented for l = 4).
In the context of frequency-dependent squeezing, low frequen-
cies predominantly exhibit amplitude squeezing, whereas high
frequencies display phase squeezing. By detecting the idler mode
at an angle 𝜃i, the signal mode is simultaneously squeezed at an
angle−𝜃i. The interplay between the entanglement degreeCs, ob-
servation frequency f , and the readout angle 𝜙 (as illustrated in
Figure 10) facilitates the quantification of frequency-dependent
squeezing. For each observation frequency, the corresponding
optimal readout angle can be determined.
To augment the practical applicability of the simulationmodel,

we incorporated parameter deviations under non-ideal condi-
tions and assessed their effects on the simulation outcomes, us-
ing the normal dispersion scenario as a representative example.
The parameters considered include temperature (T), intrinsic
quality factor (Q0), and the second-order dispersion coefficient
(D2). Extensive simulations indicate that these deviations primar-
ily result in shifts in the observation frequency, while leaving
the core characteristics largely unchanged, as demonstrated in

Figures 10c,d. To quantitatively assess the impact of these devia-
tions under realistic conditions, we introduced a frequency offset
(fe) to represent the induced frequency shift, with positive values
denoting a rightward shift and negative values indicating a left-
ward shift, as shown in Figure 11.
The silicon nitridemicroring resonator, distinguished by its in-

tegrated architecture, merges compactness with exceptional per-
formance, positioning it as an exemplary candidate for cutting-
edge applications. This investigation not only augments the sen-
sitivity of displacement sensors, such as gravitational wave de-
tectors, but also propels the advancement of quantum precision
measurement technologies to new frontiers.

4.4. Entanglement Bandwidth and Threshold Power

In this subsection, we will highlight the differences between
anomalous dispersion and normal dispersion.
First, we explore the relationship between the intrinsic qual-

ity factor Q0, entanglement bandwidth 𝛿f , and threshold power
Pth. Figure 12 illustrates the curves under both anomalous and
normal dispersion conditions. The results indicate that, within a
suitable range, Q0 is inversely proportional to the entanglement
bandwidth 𝛿f and positively correlated with the threshold power
Pth. Furthermore, as Q0 increases, a slight increase in the en-
tanglement extremum is observed. The loaded quality factor Q
exhibits a relationship with both the entanglement bandwidth
and the threshold power that parallels the behavior of the intrin-
sic quality factor Q0. In this study, the coupling rate is fixed at
r = 1.222. For the entanglement bandwidth calculation, we use a
mode number of 4, with specified pump amplitude Ain and de-
tuning. The fourth stage is chosen to best represent the entangle-
ment bandwidth, and the 1∕e of the entanglement extremum is
used as the boundary, where e represents the natural constant.
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Figure 12. The relationship curve between the quality factor (including both the intrinsic quality factor Q0 and the loaded quality factor Q), the entan-
glement bandwidth 𝛿f , and the threshold power Pth. The yellow graph depicts the relationship between Q0, 𝛿f , and Pth under anomalous dispersion (𝜎c
= 3 GHz, r=1.222), while the green graph shows the corresponding relationship for Q, 𝛿f , and Pth in the same dispersion regime. The orange graph
illustrates this relationship under normal dispersion forQ0, 𝛿f , and Pth, and the red graph presents the same forQ, 𝛿f , and Pth under normal dispersion
(𝜎c = 3 GHz, r=1.222).

It can be observed that, for equivalent quality factors and de-
tuning, the threshold power for normal dispersion is marginally
inferior to that for anomalous dispersion. This disparity stems
from the fact that, in our simulations, the nonlinear coeffi-
cient 𝜂1 for normal dispersion surpasses 𝜂2 for anomalous
dispersion (𝜂1 = 27.75, 𝜂2 = 20.93). Consequently, normal dis-
persion engenders more substantial nonlinear effects for the
same optical power, thereby necessitating a reduced threshold
power.
In contrast to the threshold power required for the initial comb

tooth to emerge,[55] the threshold power discussed here pertains
to theminimumpump power needed to generate comb teeth cor-
responding to a specific mode number (with l = 1 selected for
this study). As Q0 increases, the resonance peaks in Figure 3 be-
come progressively narrower, while the detuning remains fixed,
thereby hindering the growth of comb teeth for this particular
mode number. Consequently, a higher threshold power is neces-
sitated.

5. Conclusion

In summary, we have developed a robust platform for design-
ing EPR-entangled QFCs utilizing a silicon nitridemicroring res-
onator. This platform leverages the bipartite entanglement crite-
rion to investigate how the resonator’s structural parameters in-
fluence the degree of entanglement. Our QFC is capable of gen-
erating at least 12 channels of quantum-entangled states, posi-
tioning it as a promising candidate for multi-channel quantum
information networks. We meticulously align various microcav-
ity structures with distinct dispersions, performing an exhaus-
tive analysis of the entanglement bandwidth and threshold power
under both normal and anomalous dispersion conditions. More-
over, by utilizing one of the six EPR-entangled pairs generated,
we engineer a frequency-dependent single-mode squeezed state,
enabling the exploration of the intricate relationship between
the readout angle and observation frequency. This provides valu-
able insights into frequency-dependent squeezing. Our findings
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demonstrate substantial potential for advancing quantum preci-
sion measurement applications.
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