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Manipulating multiple optical parametric processes in photonic topological insulators
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Topological quantum optics has endowed integrated quantum devices with novel functionalities, including
unidirectional transport and immunity to structural defects. Here we propose topological interfaces that support
two distinct edge modes with different frequency ranges. The nonlinear four-wave mixing processes in the
topological interfaces lead to the generation of signal and idler photons, each corresponding to distinct edge
modes. By designing a diamondlike topological structure, we can couple the signal and idler photons into
opposite branches, leading to spatial separation of the photon pairs. This behavior enables on-chip generation and
flexible control of the topological biphoton states. More importantly, the biphoton states are inborn topologically
protected, showing robustness against sharp bends and disorders. Our proposal offers the possibility of robust,
multifunctional topological quantum devices, which may find applications in quantum information processing.
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I. INTRODUCTION

The burgeoning field of on-chip quantum light sources
has been undergoing revolutionized development thanks to
the advancements in nanofabrication technologies. Significant
advances in reducing the size and improving the stability
through photonic integrated circuits have played a pivotal
role in enabling on-chip generation and control of quantum
light sources [1]. These improvements have supported more
complex and expanding quantum operations, which are cru-
cial for the progress in quantum computing [2,3], quantum
communication [4–6], and quantum sensing [7,8]. Two key
aspects of on-chip quantum light sources are the amplification
of light signals and the generation of entangled photon pairs.
Implementing on-chip multifunctional quantum capabilities
simultaneously requires precise dispersion engineering and
specific materials and is still challenging from a certain
perspective.

In parallel, the integration of topological phases into
quantum systems is enhanced by the robust guidance and
manipulation of light and holds great potential as a cutting-
edge and promising area of research [9–11]. This approach
is key to the stable generation and transport of quantum
states. Topological phases possess a topological nature that
provides quantum states with robustness against structural
imperfections and disorders. In particular, there have been
significant advancements in this field, such as the emergence
of topological quantum emitters [12,13], topological quantum
interference [14,15], topological biphoton states [16–18], and
even topological quantum frequency combs [19,20]. At the

*These authors contributed equally to this work.
†cjiang@sjtu.edu.cn
‡gqhe@sjtu.edu.cn

same time, emerging advances in topological nonlinear optics
also promise topological protection of complex nonlinear pro-
cesses [21–26]. A significant amount of research has focused
on the development of quantum light sources in topologi-
cal optical systems. However, the study of multifunctional
quantum devices in topological photonic systems remains
unexplored.

Here we propose integrated topological quantum devices
that perform two functions, including optical parametric am-
plification (OPA) and the entangled biphoton state generation.
We demonstrate that a sandwich topological interface emu-
lating the quantum valley Hall (QVH) effect can support two
distinct edge modes with different frequency ranges. Using a
diamondlike topological structure, we can couple these two
edge modes to opposite branches. This allows the spatial
separation of signal and idler photons generated from four-
wave mixing (FWM) processes. We show that this topological
device supports multiple optical parametric processes (OPPs)
and can perform two functions: OPA and the generation of
continuous frequency entangled biphoton states. Moreover,
these biphoton states are robust against defects and sharp
bends due to the topological protection of the QVH effect.
Our approach expands the potential for on-chip, robust, and
multifunctional topological quantum devices and paves the
way for new research paths in quantum optics.

II. RESULTS

A. Topological edge modes in kagome lattice

The discovery of the photonic kagome lattice provides
a feasible framework for the controllable design of higher-
order valley-Hall edge modes [27,28]. Here we explore a
two-dimensional topological kagome lattice that supports
the generation and flexible control of photonic topological
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FIG. 1. (a) Scheme of topological design supporting the generation of FWM processes is composed of shrunken (d = 0.18a) and expanded
(d = 0.40a) kagome lattices with C3 symmetry. (b) Band diagrams of unperturbed (gray dots), shrunken (green dots), and expanded (orange
dots) kagome lattices, respectively. Calculated dispersion curves for the (c) sandwich topological interface, (d) topological interface 1, and (e)
topological interface 2, respectively. The insets in the lower right corner show schematics of three interfaces composed of shrunken (green
region) and expanded (orange region) kagome lattices. The lower insets show the electric field distributions for two edge modes.

quantum states. As depicted in Fig. 1(a), a topological de-
sign supporting FWM processes is composed of two kagome
lattices (with a lattice constant of a = 480 nm) formed by
the silicon cylinders (ε = 12) in the air background (ε0 = 1).
The silicon cylinder has a radius of 0.13a and an infinite
thickness. The effective topological transition is performed
by expanding or shrinking an unperturbed kagome lattice.
Figure 1(b) shows the band structures of unperturbed (gray
dots), shrunken (green dots), and expanded (orange dots)
kagome lattices, respectively. Due to the high symmetry of
unperturbed kagome lattices, a Dirac-like degeneracy appears
at the two high symmetry points (K and K′ valleys) of the Bril-
louin zone [28]. The deformation of the unperturbed kagome
lattice leads to a complete photonic band gap and band inver-
sion mechanism. Note that the band structures of shrunken
(d = 0.18a) and expanded (d = 0.40a) kagome lattices do
not overlap perfectly; this is because the shifts of the dielectric
cylinders are not identical.

The kagome lattice exhibits three mirror symmetries: Mx

for the x axis and M± for the two lines obtained by ro-
tating the x axis by ±2π/3 [29]. The polarization along
the xi axis represents the expectation value of the position
with pi = 1

S

∫
BZ Aid2k, where Ai = −i〈ψ |∂ki |ψ〉 denotes the

Berry connection with xi = x, y [29]. The topological bulk

polarization describes the shift of the average position of
the Wannier center from the center of the unit cell. It is
noted that the topological bulk difference of shrunken and
expanded kagome lattices corresponds to P = (0, 0) and P =
(1/3, 1/3), respectively, which denotes a trivial and nontrivial
case, respectively [30].

Due to the bulk-boundary correspondence, the nontrivial
polarization difference leads to topological edge states lo-
calized at boundaries between the shrunken and expanded
kagome lattices. Furthermore, for a finite structure, the de-
formed kagome lattice is expected to exhibit higher-order
topological states such as zero-dimensional corner states [28].
Here we consider a sandwichlike topological interface con-
sisting of a domain of expanded kagome lattices sandwiched
between two domains of shrunken kagome lattices. The calcu-
lated band structure for this sandwich topological interface is
shown in Fig. 1(c). The dispersion curve reveals the presence
of two edge modes localized in the topological band gap.
Furthermore, it leads to an extensive bandwidth exceeding
40 THz. The lower inset illustrates that these two modes are
exclusively confined to the distinct inner boundaries between
two types of kagome lattices. This behavior arises from the
presence of two boundaries in the sandwich topological inter-
face, which correspond to two topological transitions in the
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FIG. 2. (a) Scheme of a topological device composed of shrunken (green region) and expanded (orange region) kagome lattices, which
contains two parts: a sandwich topological interface (marked by a black dashed box) and a diamondlike topological structure (the length of
each side is 30a). (b) Normalized electric field monitored by two probes placed at the output ports of the two branches in the diamondlike
structure. (c)–(f) Field profiles for edge modes at different frequencies in our topological device.

case of trivial-nontrivial-trivial topology. Since the topologi-
cal band inversion occurs only once at each inner boundary,
each boundary supports a single edge mode. As a result, the
bands of the two edge modes do not overlap, leading to the
formation of a tiny band gap around 193 THz.

We also perform dispersion calculations for the topological
interfaces 1 and 2, which contain inverted kagome lattices
and exhibit a single boundary. As shown in Figs. 1(d) and
1(e), both of them exhibit two edge modes located within
the topological band gap. However, the electric field of two
edge modes in each topological interface is localized at the
outer and inner boundaries, respectively. Note that the appear-
ance of the outer edge mode is attributed to the application
of periodic boundary conditions on the outer boundaries in
the simulation model [28]. Correspondingly, the exchange of
two kagome lattices leads to the reversion of the topological
edge states due to the inversion of the nontrivial polariza-
tion difference [29]. The field distribution and dispersion
relations indicate that the two distinct edge modes identi-
fied in the sandwich topological interface are related to the
edge modes (localized at the inner boundary) of topological
interfaces 1 and 2, respectively. The mode-matching behav-
ior simplifies the process of coupling edge modes from the
sandwich topological interface to other topological interfaces.
Due to the distinct frequency ranges of the two edge modes,
the coupling between different modes achieves a frequency-
dependent filtering capability. In other words, the frequency
division characteristic enables the realization of multifunc-
tional on-chip topological photonic devices, which may find
applications in areas such as optical transmission and light
source generation.

Accordingly, we design a topological device composed
of shrunken (green region) and expanded (orange region)
kagome lattices, which contains two parts: a sandwich

topological interface (marked by a black dashed box) with
a length of L and a diamondlike topological structure
[Fig. 2(a)]. It is important to highlight that, in this design, the
branches of the diamondlike structure exhibit distinct topo-
logical edge modes as a result of the mirror symmetry of the
lattices. For the sandwich topological interface region, there
are two allowed edge modes with different frequency ranges.
However, for the diamondlike structure, the two branches
correspond to topological interfaces 1 and 2, respectively.
Therefore, the light can be efficiently transmitted to the left
and right branches with the frequency range of f > 193 THz
and f < 193 THz, respectively.

To get deeper insights into the characteristics of topological
edge modes, we simulate the field profiles in this diamondlike
structure at different frequencies. As shown in Figs. 2(c)–2(f),
the energy couples to the opposite branch corresponding to
different pump frequencies. We set two probes positioned at
the output ports of two branches to monitor the field inten-
sity. Figure 2(b) shows the simulated transmission spectra of
the light, which clearly shows the frequency splitting func-
tionality of our design. The presence of a frequency gap,
characterized by the absence of power detected at either out-
put port, results from the competition between the two edge
modes. Accordingly, as shown in Fig. 2(d), the light does not
engage with any branch at the specific frequency of around
193 THz. The result is consistent with the dispersion relation
shown in Fig. 1(c). It is worth mentioning that this dichroic
mirror behavior has the potential to facilitate a range of inno-
vative topological functionalities.

B. Multiple OPPs in topological devices

Due to the fascinating functionalities of the diamond-
like topological structure, we expect stable generation and
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FIG. 3. (a) Phase-matching intensity distribution of FWM processes in the sandwich topological interface. (b) JSA distribution and
(c) corresponding JTA distribution characterizing the biphoton state generated in the sandwich topological interface, where the color bar
indicates the magnitude. (d)–(f) Three parts of the density matrix ρ of the quantum state corresponding to three regions (labeled by d, e, and f,
respectively) in (b), where the coordinates in the horizontal plane denote different projection bases.

flexible manipulation of topological quantum states. Due to
the absence of second-order nonlinearity of silicon, we only
consider the FWM processes (third-order nonlinear effect).
The nonlinear FWM processes generated in the sandwich
topological interface can lead to the signal and idler pho-
tons. To ensure the topological transport of biphoton states,
the frequencies of the pump, signal, and idler modes should
be within the operation bandwidth of the topological edge
modes. The energy and momentum conversion equations that
govern the FWM processes are defined as 2ωp = ωs + ωi and
2kp = ks + ki, where ωp,s,i and kp,s,i represent the frequencies
and wave vectors of the pump, signal, and idler, respectively.
In general, the Hamiltonian for the FWM process in the topo-
logical waveguide can be written as

ĤNL = ĤSPM + ĤXPM + ĤFWM, (1)

where ĤSPM, ĤXPM, and ĤFWM denote the self-phase mod-
ulation (SPM), cross-phase modulation (XPM), and FWM
processes, respectively. The SPM and XPM terms affect the
oscillation process. Due to the frequency division of our di-
amondlike topological structure, the left and right branches
correspond to the OPA process and entangled biphoton gener-
ation, respectively [30].

By matching the frequencies of FWM processes with the
operating bandwidths of topological edge states, it becomes
possible to implement topological protection of entangled
biphoton states [16–18], and even quantum frequency combs
[19,20]. The dispersion engineering of topological edge states
offers a possible method for manipulating FWM processes
within the topological band gap [16]. To satisfy the momen-
tum conversion condition for FWM processes, the wave vector

mismatch �k = 2kp − ks − ki must be taken into account.
Note that the energy conversion of FWM processes is sig-
nificantly improved when the wave vector mismatch satisfies
�k = 0. The phase-matching intensity of FWM processes
is given by PM = sinc( �kL

2 ), where L is the length of the
topological interface [41].

The phase-matching intensity distribution of FWM pro-
cesses in the sandwich topological interface is depicted in
Fig. 3(a), demonstrating three cases of phase matching. The
two main bright regions correspond to the intraband OPPs of
the two edge modes themselves. However, besides the intra-
band OPP, an additional phase-matching case (bright curves)
is also observed, corresponding to the interband OPP between
two edge modes. The nonlinear interactions between two edge
modes result in mode conversion, which can lead to significant
correlations between different transverse modes.

By pumping the sandwich topological waveguide with
the frequency of 188 THz, we can calculate the joint spec-
tral amplitude (JSA) of the biphoton state generated from
the FWM process. Such a biphoton state can be given
by

|	〉 =
∫∫

dωsdωiA(ωs, ωi )â
†
s (ωs)â†

i (ωi )|0〉, (2)

where â†
s and â†

i are creation operators for photons and
A(ωs, ωi ) is the JSA. The JSA is governed by A(ωs, ωi ) =
α( ωs+ωi

2 ) sinc( �kL
2 ), where the pump spectrum is α( ωs+ωi

2 ) and
joint phase-matching spectrum is sinc( �kL

2 ). The pump is
Gaussian with a frequency center of fp = 188 THz and full
width at half maximum of � fp = 115 GHz.
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FIG. 4. (a) Frequencies of the signal and idler modes resulting from the interband OPP at different pump frequencies. (b) FWM gain
coefficient corresponding to interband OPP at different pump frequencies for a 400a length topological waveguide (1 W pump power).
(c) Signal gain as a function of pump power for the waveguide length with L = 200a, 400a, and 600a, respectively.

Consequently, the JSA characterizing the biphoton state
generated in the sandwich topological interface is plotted in
Fig. 3(b), where the main intensity region (corresponding
to intraband OPP) along the diagonal axis denotes a strong
signal-idler correlation in the frequency domain [16]. Notably,
two additional bright spots are symmetrically located above
and below the central line, indicating the presence of interband
OPP. The spotlike phase-matching intensity distribution is
also proven to be a perfect case for a heralded single pho-
ton generator [41] and, also, its purity can be improved by
machine learning methods [42,43]. These points indicate the
existence of frequency correlations resulting from the addi-
tional interband OPP interaction between edge mode 1 and
edge mode 2. Note that the signal mode frequency is larger
than 193 THz, so the generated signal can pass through the
left branch while the generated idler passes through the right
branch. The potential phase-matching conditions between two
different topological edge states promise many effective solu-
tions for manipulating photonic topological quantum states.

As a conjugate variable of the frequency, we can obtain
the joint temporal amplitude (JTA) of the biphotons from
the Fourier transform of the JSA by Ã(ts, ti ) = F[A(ωi, ωs)]
[43]. The peak intensity of the JTA is located at �τy = �τz =
0, indicating a relative phase value of φ = 0 [Fig. 3(c)]. The
biphoton state exhibits a signal-idler time correlation with a
bandwidth of 10 ps.

Furthermore, we analyze the photonic topological quantum
states by implementing quantum state tomography on a set of
bases. We discretize the frequencies of the signal and idler
modes in the JSA into 681 frequency modes, denoted as fi,
where i = 1, 2, 3, . . . , 681. Based on the JSA, we can calcu-
late the density matrix of the quantum state by ρ = |	〉〈	|,
with projection bases of | f1 f1〉, | f1 f2〉, | f1 f3〉, . . . , | f681 f681〉.
Given its considerable size, we plot three parts of the density
matrix (comprising 49 projection bases) in Figs. 3(d)–3(f)
[corresponding to three dashed boxes in Fig. 3(b)]. The two
density matrices [Figs. 3(d) and 3(f)] clearly demonstrate the
emergence of the interband OPP.

C. Interband OPP: Tunable OPA

Our topological scheme supporting multiple OPPs pro-
vides a different approach to the manipulation of quantum
functional devices. Here we implement an OPA by the FWM

with interband OPP, where the frequency division of the
diamondlike structure leads to spatial separation of signal
photons. This spatial separation behavior allows for the direct
extraction of amplified optical signals since the generated
signal could pass through the left branch of the diamondlike
structure ( fs > 193 THz). We investigate the frequencies of
the signal and idler modes resulting from the interband OPP
with different pump frequencies. As shown in Fig. 4(a), the
tunable range of the signal mode extends from 193.5 THz to
196 THz, achieving a tunable range of 2.5 THz.

Typically, signal and strong pump modes are coupled into
the topological waveguide, where the signal power is am-
plified via degenerate FWM processes [44]. The FWM gain
coefficient is given by g = √

γ Pp�k − (�k/2)2, where γ =
ωpn2/cAeff is the effective nonlinearity of the topological
waveguide, Pp is the pump power, n2 is Kerr nonlinearity,
Aeff is the nonlinear effective area, and c is the speed of
light. The effective amplification in the waveguide requires
strict adherence to a specific phase-matching condition due to
the coherent nature of the parametric interaction. Figure 4(b)
illustrates the FWM gain coefficient corresponding to inter-
band OPP at different pump frequencies for a 400a length
topological waveguide (1 W pump power). The interband OPP
allows for a supernarrow bandwidth of high gain with a full
width at half maximum (FWHM) of around 8 GHz. At the
center frequency of the gain region, the FWM gain coefficient
of up to 30 dB/cm can be achieved and the intensity of the
FWM gain peak is constant during the tuning of the pump
frequency. Such a narrow-bandwidth tunable OPA can be used
to amplify signals from a single-photon source.

Consider a pump wave experiencing SPM, while cross-
phase modulation XPM occurs in both signal and idle modes.
Therefore, the nonlinear phase mismatch caused by SPM and
XPM should be taken into account and the updated phase
mismatch is given by �kall = 2γ Pp − �k [45]. Neglecting
optical propagation loss, the observed signal gain generated
via FWM for interband OPP can be written as [34]

Gs = Ps(L)

Ps(0)
= 1 +

(
γ Pp

g
sinh(gL)

)2

, (3)

where Ps(L) and Ps(0) are the output and input signal pow-
ers, respectively. In Fig. 4(c), we plot the signal gain as
a function of pump power for the waveguide length with
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FIG. 5. Distribution of (a) normalized Schmidt coefficients λn

and (b) entanglement entropy Sk for the biphoton state generated
from intraband OPP. (c) Eigenfunctions φn (n = 1, 2, 3, 4) for the
biphoton state. (d) Normalized two-photon spectral distribution with
varying pump frequencies.

L = 200a, 400a, and 600a, respectively. For a topological
waveguide with L = 400a, a peak signal gain of 5 dB can
be achieved when the pump power exceeds 4 W. Note that
when the gain of an OPA is large, the generated signal photons
can be significantly amplified, reaching macroscopic levels
through a phenomenon known as optical parametric genera-
tion. The expected number of photons at the output is given
by 〈n〉 = sinh2(gL) ≈ 0.25 exp(2gL) [46]. The detailed quan-
tum analysis of the OPA in our topological device is shown
in Supplemental Sec. II [30]. Such a quantum OPA can be
used in squeezing light detection [47] and optical homodyne
measurement [48].

D. Intraband OPP: Entangled biphoton state generation

Furthermore, we can expect the generation and manipula-
tion of a frequency entangled biphoton state derived from the
intraband OPP. Note that all pump, signal, and idler modes
can couple into the right branch of the diamondlike topo-
logical structure ( fs, fi < 193 THz), which is convenient for
extracting broadband entangled photon pairs directly at this
branch. We use the Schmidt decomposition to evaluate the
separability of the JSA without considering part of the phase
information [37,49]. Figures 5(a) and 5(b) show the distribu-
tions of normalized Schmidt coefficients λn and entanglement
entropy Sk , respectively. Note that the Schmidt coefficients λn

indicate the probability of acquiring the nth quantum state.
Nonzero coefficients (greater than 1) indicate the frequency
entanglement [37,50]. Moreover, the entanglement entropy,
denoted by Sk = −∑

λn log2 λn, and the Schmidt number,
represented by K = (

∑
λ2

n)−1, are reliable methods for mea-
suring the degree of entanglement [49]. The entanglement of a
topological quantum state can be verified by Sk > 0 or K > 1,
where a higher value of Sk and K indicates a high-quality of
frequency entanglement. For our topological quantum state,
the calculated values for Schmidt number and entanglement
entropy are K = 16.24 and Sk = 4.42, respectively, which

indicates the emergence of a high-quality frequency entangled
biphoton state in the sandwich topological interface.

Due to the symmetry between the signal and idler photons,
the eigenfunctions φ and ψ in the Schmidt decomposition
have the same form. The initial four eigenfunctions φn (n =
1, 2, 3, 4) are shown in Fig. 5(c), which indicates the orthogo-
nality of each basis function. Also, the number of photon pairs
generated by the FWM process is given by

S(ω) = 〈	|a†
s a†

i aias|	〉

= η2

c2

∫
dωs

∫
dωi|A(ωs, ωi )|2,

(4)

where as and ai are annihilation operators for photons and
η is a constant term. Correspondingly, we calculate the
normalized two-photon spectral distribution with pump at
different frequencies. As shown in Fig. 5(d), the 3 dB band-
widths of the two-photon spectrum are 1.94, 1.54, 1.22,
0.92, and 0.66 THz, respectively, demonstrating the tunability
of the spectral bandwidth. This high-dimensional topologi-
cal quantum entangled state with tunable spectral bandwidth
enables complex and large-scale quantum simulations and
computations.

Alternatively, the single-photon purity associated with
the factorization of biphoton states can be implemented by
Schmidt decomposition. Purity plays a crucial role in achiev-
ing highly visible quantum interference between photons
generated from the same source. In general, single-photon
purity is expressed as Tr(ρ̂2

s ), where ρ̂s = Tri(|	〉〈	|) rep-
resents the density operator for the heralded single photon
and Tri is the trace over the idler mode. The heralded
single-photon purity, denoted as Tr(ρ̂2

s ), can be calculated by
Tr(ρ̂2

s ) = K−1 [51]. Consequently, the single-photon purity
for our topological quantum state is calculated to be 0.06,
corresponding to a highly inseparable quantum state.

E. Robustness against disorders for FWM processes

To verify the topological protection of nonlinear FWM
processes, we simulate the FWM process in the diamond-
like topological structure with CW pump excitation [11,21]
employing COMSOL MULTIPHYSICS software (see Methods).
In our numerical model, we use a point source localized at
the input port to excite topological edge modes. Notably,
there is no input for the idler mode; the excitation of idler
modes reveals the generation of stimulated FWM processes
[11]. Here the frequencies of the pump, signal, and idler
modes are chosen as fs = 196 THz, fp = 188 THz, and
fi = 180 THz, respectively. As depicted in Figs. 6(a)–6(c),
the field profiles of topological edge modes at the idler fre-
quency provide clear evidence of the simulated FWM process.
Most importantly, due to their different frequencies, the pump
and signal modes couple into the right branch of the dia-
mondlike structure, while the generated idler mode couples
into the left branch. As a result, the photon pairs are sepa-
rated, with an idler photon being extracted during the FWM
process.

In addition, we incorporate a diamondlike topological
structure to extend the capacity of our system to a larger
spatial domain, allowing for improved manipulation of the
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FIG. 6. Field profiles of the FWM process in the diamondlike topological structure at the frequencies of the (a) signal mode ( fs = 196
THz), (b) pump mode ( fp = 188 THz), and (c) idler mode( fi = 180 THz), respectively. Field profiles of the stimulated FWM process in the
expanded diamondlike topological structure at the frequencies of the (d) signal mode ( fs = 196 THz), (e) pump mode ( fp = 188 THz), and (f)
idler mode ( fi = 180 THz), respectively. The red empty circle marked in (f) denotes the removed cylinder.

transmission routes of photonic topological quantum states.
As shown in Figs. 6(d)–6(f), within the blue region, the posi-
tion of a rod is randomly shifted by distances between −0.1a
and 0.2a (left branch) and a rod is randomly removed (right
branch). The idler mode generated by FWM processes also
shows strong localization along arbitrary topological bound-
aries. The results reveal that the topological nature of the
QVH effect brings robustness to the FWM process against
sharp bends and defects. These intriguing behaviors enable the
manipulation of the two-photon state’s path and the flexible
extraction of individual photons.

III. CONCLUSION

In this work, we demonstrate on-chip topological quantum
optical devices capable of performing multiple functions in-
cluding OPA and entangled biphoton generation. We show
that there exist two distinct edge modes corresponding to dif-
ferent frequency ranges in the sandwich topological interface.
By employing a diamond structure, we can couple these two
edge modes into separate branches to achieve the separation of
spatial modes. Due to the coexistence of two edge modes, the
FWM process enables two types of OPPs, corresponding to
interband and intraband cases, respectively. More importantly,
thanks to distinct transmission paths of the edge modes, these
two OPPs can individually facilitate quantum OPA and the
generation of continuous frequency-entangled photon pairs
along separate branches. In addition, these quantum processes

exhibit topological protection properties, showing robustness
to defects and sharp bends. Our proposal offers enhanced
possibilities for on-chip robust, multifunctional topological
quantum devices.

IV. METHODS

A. Numerical simulation

We use the finite-element method solver COMSOL MUL-
TIPHYSICS to perform numerical simulations. The band
diagrams [Fig. 1(b)] and dispersion curves [Figs. 1(c)–1(e)]
of topological photonic crystals are calculated by solving the
eigenfrequencies with periodic boundary conditions. Here we
consider the field profiles of transverse magnetic (TM) polar-
ization modes. In the simulation of the electric field profile
[Figs. 2(c)–2(f)], we construct the diamondlike topological
structure in the frequency domain solver and then use a point
source to excite the edge states. The simulated nonlinear
FWM processes (Fig. 6) are performed by using the third-
order nonlinearity of silicon χ (3) = 5 × 10−18 m2/V2. The
FWM process in the sandwich topological interface can be
described by

Pp(ωs + ωi − ωp) = 6ε0χ
(3)EsEiE

∗
p ,

Ps(ωp + ωp − ωi ) = 3ε0χ
(3)EpEpE∗

i ,

Pi(ωp + ωp − ωs) = 3ε0χ
(3)EpEpE∗

s , (5)
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where ε0 is the vacuum permittivity and Pp,s,i and Ep,s,i are
the polarization and electric field of the pump, signal, and
idler, respectively. The frequencies of the pump, signal, and
idler modes are chosen as fs = 196 THz, fp = 188 THz,
and fi = 180 THz, respectively. A point source localized at
the input port is used to excite the pump and signal modes,
while there is no input for the idler mode. Due to the coupling
of three electromagnetic models at the pump and signal fre-
quencies, the excitation of idler modes reveals the generation
of stimulated FWM processes [11,21].

B. Theoretical analysis of interband OPP

In our diamondlike topological device, the interband OPP
in the sandwich topological interface leads to an OPA pro-
cess. Note that only the signal mode can be coupled into
the left branch, which is more beneficial for the extrac-
tion of the amplified signal. From the nonlinear Hamiltonian
[Eq. (2)], we can derive the Heisenberg equations for the
pump, signal, and idler modes [11]. By substituting the oper-
ators in the Heisenberg equations with classical light fields,
the coupled equations for these three modes can be given
by

dAp

dx
=iγ {[|Ap|2 + 2(|As|2 + |Ai|2)]Ap

+ 2AsAiA
∗
p exp(i�kx)},

dAs

dx
=iγ {[|As|2 + 2(|Ai|2 + |Ap|2)]As

+ A∗
i A2

p exp(−i�kx)},

dAi

dx
=iγ {[|Ai|2 + 2(|As|2 + |Ap|2)]Ai

+ A∗
s A2

p exp(−i�kx)}, (6)

where Aj (x), j ∈ {p, s, i} is the amplitude of the light field.
Solving the coupled equations enables the amplification of a
weak signal as it propagates along the topological waveguide;
we can get an analytical solution

Ps(L) = Ps(0)

(
1 +

[
γ Pp

g
sinh(gL)

]2
)

. (7)

With this equation, we can calculate the power of the signal
light after it has propagated a distance L through the topologi-
cal waveguide. Therefore, the signal gain can be given by [34]

Gs = Ps(L)

Ps(0)
= 1 +

(
γ Pp

g
sinh(gL)

)2

. (8)
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I. TOPOLOGICAL KAGOME LATTICE

We consider a two-dimensional infinite kagome lattice with C3 lattice symmetry (lattice constant a), as shown in
Fig.S1. We apply the tight-binding model to the lattice, considering only the nearest hopping term in the model. As
a result, the Hamiltonian model in momentum space can be given by [1]

Ĥ0 =

 0 K + jei(
1
2kx+

√
3

2 ky)a K + je−i(
1
2kx−

√
3

2 ky)a

K + je−i(
1
2kx+

√
3

2 ky)a 0 K + je−ikxa

K + jei(
1
2kx−

√
3

2 ky)a K + jeikxa 0

 , (S1)

where K and J denote the intra-cell coupling (red dotted line) and inter-cell coupling (blue dotted line), respectively,
as depicted in Fig.S1(a). We can write this Hamiltonian in a more general form:

Ĥ0 =

 0 a1 b1
a2 0 c1
b2 c2 0

 , (S2)

Next, the generalized chiral symmetry operator in kagome lattices can be described as [1]:

Γ3 =

1 0 0
0 ei2π/3 0
0 0 e−i2π/3

 , (S3)

where Γ3 is the unitary chiral operator with three eigenvalues of 0, ei2π/3, and e−i2π/3. For the original Hamiltonian
H0, the Hamiltonians transformed by the unitary chiral operator are given by [2]

Ĥ1 = Γ3 H0Γ
−1
3 =

 0 e−i2π/3a1 ei2π/3b1
ei2π/3a2 0 e−i2π/3c1
e−i2π/3b2 ei2π/3c2 0

 , (S4)

Ĥ2 = Γ3H1Γ
−1
3 =

 0 ei2π/3a1 e−i2π/3b1
e−i2π/3a2 0 ei2π/3c1
ei2π/3b2 e−i2π/3c2 0

 . (S5)

Therefore, these Hamiltonians satisfy Ĥ0 + Ĥ1 + Ĥ2 = 0, which reveals that the kagome lattice has generalized
chiral symmetry. The generalized chiral symmetry promises that the sum of the respective eigenenergies is zero. The
current Hamiltonian is analogous to the Hamiltonian in the Su-Schrieffer-Heager (SSH) model. The introduction of
long-range interactions without breaking the chiral symmetry will lead to a change of the topological invariant (bulk
polarization).
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FIG. S1. (a) Shrunken and (b) expanded kagome lattice for trivial and nontrivial cases. (c) Electric field distributions at point
K in the first Brillouin zone for two kagome lattices.

To describe the band topology of the kagome lattice with complete symmetry, the bulk polarization is defined as [3]

ps = 1/Nk

∑
j,kt

vjs(kt), (S6)

where vjs(kt) is the eigenvalue (also denoted as Wannier center) of the Wilson loop. And the eigenvalue problem of

the Wilson loops is Wks+2π←ks,kt
|νk⟩j = ei2πν

j
s(kt)|νk⟩j , in which ks, kt = 0, δk, . . . , (Nk − 1)δk, δk = 1

Nk

4π√
3a

and j is

the index of the occupied bands. Hence, the Wannier bands associated with the lowest energy band of kagome lattices
can be calculated [2]. When the intra-cell coupling K is larger than the inter-cell coupling J (shrunken lattice), the
bulk polarization is calculated as 0, which denotes a trivial case (Fig.S1(a)). However, when the intra-cell coupling
K is smaller than inter-cell coupling J (expanded lattice), the calculated bulk polarization is 1/3, which denotes a
nontrivial case (Fig.S1(b)).

Therefore, according to the bulk–boundary correspondence, the difference in nontrivial polarization gives rise to
topological edge states localized at the boundaries between the shrunken and expanded kagome lattices. As shown in
Fig.S1(c), the electric field distributions at point K in the first Brillouin zone for two kagome lattices also reveal the
topological transition.
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FIG. S2. Calculated dispersion curves for the (a) shrunken (d = 0.18a) and (b) expanded (d = 0.40a) kagome lattices.

To assess the size of the forbidden frequency gaps for the shrunken (d = 0.18a) and expanded (d = 0.40a) kagome
lattices, we calculate the dispersion curves for the lattice consisting of a single primitive cell. We set the Bloch
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boundary conditions in all directions and project it in the kx direction. As illustrated in Fig.S2, the bandgaps of 60
THz (ranging from 173 THz to 233 THz) and 37 THz (ranging from 174 THz to 211 THz) can be observed, indicating
the absence of modes within these frequency ranges.

II. THEORETICAL ANALYSIS OF TWO OPPS IN TOPOLOGICAL DEVICES

For the FWM process in our topological device, it contains self-phase modulation (SPM), cross-phase modulation

(XPM), and FWM processes. The general nonlinear Hamiltonian can be written by ĤNL = ĤSPM + ĤXPM + ĤFWM,
we can write all the terms as

ĤNL = −ℏγ[
1

2
(â†pâ

†
pâpâp + â†sâ

†
sâsâs + â†i â

†
i âiâi)

+ 2(â†pâ
†
sâpâs + â†pâ

†
i âpâi + â†sâ

†
i âsâi)

+ (â†sâ
†
i âpâp + â†pâ

†
pâsâi)]

(S7)

where âp,s,i and â†p,s,i and a†s,ωi
are the annihilation and creation operators respectively, the effective nonlinearity

is γ = ωpn2/cAeff , and n2 is the Kerr nonlinearity of silicon with a value of 5 × 10−18 [4], Aeff is the nonlinear
effective area. The final term (FWM process) is crucial for the energy transfer among the three modes. The SPM
and XPM terms significantly influence the oscillation process, as well as the noise and entanglement characteristics
of the system. Note that we only consider the FWM process generated in sandwich topological waveguides with a
length L = 400a. However, the FWM processes in two branches of the diamond-like structure are neglected since the
nonlinear interaction length is small.

A. Left branch: OPA process generated from interband OPP

In our setup, we employ optical parametric amplification (OPA) through FWM, combined with interband optical
parametric processes (OPP). This approach, utilized within the diamond-like structure, results in the spatial separation
of signal photons to the left branch. For the OPA process, we analyze the evolution of quantum states by solving

the Heisenberg equation
dâj

dt = i
ℏ [Ĥ, âj ], j ∈ {p, s, i}. By substituting Eq.S7, we can calculate that the updated

Heisenberg equations for the signal and idler modes are

dâp
dt

= iγ[(â†pâp + 2(â†sâs + â†i âi)âp + âsâiâ
†
p]

dâs
dt

= iγ[(â†sâs + 2(â†pâp + â†i âi)âs + â†i âpâp]

dâi
dt

= iγ[(â†i âi + 2(â†pâp + â†sâs)âi + â†sâpâp]

(S8)

We may explore the interaction of three stationary, co-polarized waves at regular frequencies, characterized by their
slowly varying electric fields with complex amplitudes Ap(x), As(x), and Ai(x), respectively. The total transverse
field E(x, y, z) propagating along the sandwich topological waveguide (x-axis) is given by [5]

E(x, y, z) =f(y, z)A(x)

=f(y, z)
1

2
[Ap(x)× exp(ik0x− iω0t) +As(x) exp(ik1x− iω1t)

+Ai(x) exp(ik2x− iω2t) + h.c.],

(S9)

in which h.c. refers to the complex conjugate. The f(y, z) denotes a common transverse modal profile, which is
assumed to be identical for all three waves propagating along the waveguide. According to Eq.S8, we can derive three
coupled equations for the classicized field amplitudes of the three waves as [6]

dAp

dx
= iγ[(|Ap|2 + 2(|As|2 + |Ai|2))Ap + 2AsAiA

∗
p exp(i∆kx)],

dAs

dx
= iγ[(|As|2 + 2(|Ai|2 + |Ap|2))As +A∗iA

2
p exp(−i∆kx)],

dAi

dx
= iγ[(|Ai|2 + 2(|As|2 + |Ap|2))Ai +A∗sA

2
p exp(−i∆kx)],

(S10)
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Note that the first two terms on the right-hand side of Eq.S10 denote the nonlinear phase shifts due to SPM and
XPM, respectively. The last term denotes energy transfer between the interacting waves. By replacing the amplitude
of the light field by Aj(x) =

√
Pj exp(iϕj) for j ∈ {p, s, i}, Eq.S10 can be rewritten as [6]

dPp

dx
= −4γ

(
P 2
pPsPi

)1/2
sin θ,

dPs

dx
= 2γ

(
P 2
pPsPi

)1/2
sin θ,

dPi

dx
= 2γ

(
P 2
pPsPi

)1/2
sin θ,

(S11)

and

dθ

dx
= ∆k + γ(2Pp − Ps − Pi) + γ

[(
P 2
pPi/Ps

)1/2
+
(
P 2
pPi/Ps

)1/2 − 4 (PsPi)
1/2
]
cos θ. (S12)

Neglecting the third term in Eq.S12, an approximated result for relative phase difference is given by [5]

dθ

dx
≈ ∆k + γ(2Pp − Ps − Pi) ≈ ∆k + 2γPp. (S13)

Eq.S10 describes the amplification of a weak signal propagating along the topological waveguide. To solve the
equations, let dA0

dx = 0, then we can get an analytical solution [7]

Ps(L) = Ps(0)

(
1 +

[
γPp

g
sinh(gL)

]2)
, (S14)

Pi(L) = Ps(0)

[
γPp

g
sinh(gL)

]2
, (S15)

where L is the propagating length of the topological waveguide along x axis. The parametric gain coefficient is given
by

g2 =
[
(γPp)

2 − (κ/2)2
]
= −∆k

[
∆k

4
+ γPp

]
. (S16)

Furthermore, the single gain can be given by [5]

Gs =
Ps(L)

Ps(0)
= 1 +

(
γPp

g
sinh(gL)

)2

. (S17)

B. Right branch: entangled biphoton state generated from intra-band OPP

After tracing out of interband OPP from the FWM process in our diamond-like structure (left branch), the FWM
process propagating along the right branch can be considered as an entangled biphoton state generator. Here we start
with the nonlinear Hamiltonian in Eq.S7, by replacing neglecting the weak terms and pump term 1

2 (â
†
pâ
†
pâpâp), the

Hamiltonian of the FWM process can be rewritten by

ĤNL ≈ −ℏγ[2(â†pâ†sâpâs + â†pâ
†
i âpâi) + (â†sâ

†
i âpâp + â†pâ

†
pâsâi)]. (S18)

Here we apply the electric field to replace the operators as

ĤNL ≈ −ℏγ[2(Ê+
p Ê
−
p Ê

+
s Ê
−
s + Ê+

p Ê
−
p Ê

+
i Ê
−
i ) + (Ê+

s Ê
+
i Ê
−
p Ê
−
p + Ê−s Ê

−
i Ê

+
p Ê

+
p )], (S19)

in which the pump field operator is considered as the classical field

Ê(+)
p (x, t) = Ê−∗p (x, t) = Ape

i(kpx−ωpt), (S20)
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and the quantized field of signal and idler modes are

Ê
(−)
j (x, t) =

∫
dωjA

∗
je
−i(kjx−ωjt)â†j(ωj), j = s, i, (S21)

where the amplitude of the field is Aj =
√

ωj

4πε0njcAeff
. By substituting Eq.S20 and Eq.S21 into Eq.S19, we can obtain

the Hamiltonian as

ĤNL = −ℏη
∫ ∞
−∞

dωs

∫ ∞
−∞

dωie
−i(2kp−ks−ki)xe(2ωp−ωs−ωi)tâs(ωs)âi(ωi) + h.c., (S22)

where the constant term is

η =
AP

2γ

4πϵ0cAeff

√
ωsωi

nsni
. (S23)

we can calculate the biphoton state generated from the FWM process via first-order perturbation theory by |Ψ⟩ =
1
iℏ
∫∞
−∞ dtHNL|0⟩, therefore the biphoton state is given by

|Ψ⟩ = η

∫ ∫
dωsdωiα(

ωs + ωi

2
) sinc(

∆kL

2
)â†s(ωs)â

†
i (ωi)|0⟩,. (S24)

in which the spectrum α(ωs+ωi

2 ) = 2πδ(ωs+ωi− 2ωp), and the joint spectral amplitude (JSA) of biphoton state is [8]

A (ωs, ωi) = α(
ωs + ωi

2
) sinc(

∆kL

2
). (S25)

We use Schmidt decomposition to confirm the entanglement of photon pairs generated via intra-band OPP. The
JSA can be decomposed by [8]:

A(ωs, ωi) =

N∑
n=1

√
λnψn(ωs)ϕn(ωi), (S26)

where λn (N ∈ N) represents the Schmidt coefficient, ψn and ϕn are are orthonormal functions of ωs and ωi in the
Hilbert space. λn, ψn and ϕn are connected by these equations

∫
K1(ω, ω

′)ψn(ω
′)dω′ = λnψn(ω),∫

K2(ω, ω
′)ϕn(ω

′)dω′ = λnϕn(ω),

(S27)

where K1 and K2 are the one-photon spectral correlations, and ψn and ϕn are corresponding eigenfunctions. When
the Schmidt number N > 1, the biphoton state is considered frequency entangled. The equations can be rewritten as

K1(ω, ω
′) =

∫
A(ω, ωi)A∗(ω′, ωi)dωi,

K2(ω, ω
′) =

∫
A(ωs, ω)A∗(ωs, ω

′)dωs,

(S28)

K1 and K2 form s× s and i× i matrices respectively. The eigenfunctions can be represented as:

K1ψn = λnψn,

K2ϕn = λnϕn,
(S29)

Eq.S26 can be rewritten as

A =

N∑
n=1

√
λnψnϕ

T
n , (S30)
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Using Eq.S30, the Schmidt coefficients λn are determined by solving the eigenvalue equations. Notably, frequency
entanglement of biphoton states is confirmed when there is more than one non-zero Schmidt coefficient λn, or when
the entanglement entropy Sk > 0 [8]. Additionally, the entropy of entanglement Sk and Schmidt number K are useful
metrics to quantify the degree of entanglement [8]

Sk = −
N∑

n=1

λn log2 λn, (S31)

K = −

(
N∑

n=1
λn

)2

N∑
n=1

λ2n

. (S32)

The high values of K = 16.24 and Sk = 4.42 suggest a high quality of high-dimensional frequency entanglement.

III. IMPLEMENTING MULTIPLE OPPS IN HONEYCOMB LATTICE

A. Topological honeycomb lattice

We then consider conducting multiple OPPs in honeycomb lattices that emulate the QVH effect. We study the
valley kink states in topological honeycomb lattices, for undisturbed unit cells with C6 lattice symmetry, degenerated
Dirac points appear in the K and K′ valleys. The effective Hamiltonian near the K (K′) point is expressed as [9–11]

HK/K′ = τzνD(σxδkx + σyδky). (S33)

Here, vD represents the group velocity, and σx and σy are the Pauli matrices. δk⃗ = k⃗− k⃗K/K′ indicates the deviation
of the wavevector. Introducing unit cell distortion (d1 ̸= d2), the Hamiltonian can be modified as follows

HK/K′ = τzνD(σxδkx + σyδky) + τzγσz. (S34)

In this expression, τz = 1(−1) denotes the K (K′) valley pseudospin, σx,y,z denotes the Pauli matrices, νD is the group
velocity, and γ is the strength of the symmetry-breaking perturbation. The perturbations γ1 and γ2 are defined as
γ1 ∝

[∫
B
εzds−

∫
A
εzds

]
(VPC1) and γ2 ∝

[∫
D
εzds−

∫
C
εzds

]
(VPC2), respectively, where

∫
εzds is the integration

of the dielectric constant εz at the positions of A and B, respectively. For the given parameters, dA = 0.36a and
dB = 0.24a, resulting in

∫
B
εzds <

∫
A
εzds. Moreover, we find |γ1| > |γ2|.

This implies that the modes at the K and K′ valleys exhibit opposite circular polarizations: left-handed circular
polarization (LCP) and right-handed circular polarization (RCP), respectively. The valley Chern numbers of VPCs
are determined by [10, 11]:

CK/K′ =
1

2π

∫
HBZ

ΩK/K′(δk⃗)dS = ±1/2, (S35)

where Ω = ∇k × A⃗(k) is the Berry curvature, and A⃗(k) is the Berry connection. This integration region covers half
of the Brillouin zone. Thus, the disparity in the valley Chern numbers of the system is calculated as |CK/K′ | = 1,
confirming the topological characteristics of VPCs. These findings indicate that the oscillation patterns at the K and
K′ valleys show different polarizations.

B. Multiple OPPs in honeycomb lattices

The silicon-based VPCs are composed of a honeycomb lattice featuring circular holes (0.13a radius) with a lattice
constant of a = 480 nm. The unperturbed unit cells (d1 = d2) demonstrate a C6 symmetry, resulting in the degeneracy
of K and K′ valleys in the Brillouin zone. However, breaking the inversion symmetry (d1 ̸= d2) leads to a complete
bandgap near the Γ point [9, 10]. Figure S3(a) shows the band diagrams of unperturbed (gray dots) and perturbed
(blue dots) honeycomb lattices. There exists a bandgap for perturbed honeycomb lattice due to the breaking of C6

lattice symmetry.
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FIG. S3. (a) Band diagrams for unperturbed (gray dots) and perturbed (blue dots) honeycomb lattice. (b) Calculated
dispersion curves for the sandwich topological interface. The right insets show the field distributions for two valley kink states
with kx = 0.4(2π/a). The structural parameters of VPC1 (VPC2) are d1 = 0.36a and d2 = 0.24a (d1 = 0.24a and d2 = 0.36a).
Dispersion relations for the (c) topological interface 1 and (d) topological interface 2, respectively. The right insets show the
electric field distributions for different edge modes.

In VPCs, topologically protected edge states, also known as valley kink states [5], are observable at the boundary
between VPC1 and VPC2. Similarly, we calculate the band structure of a sandwich topological interface containing
both VPC1 and VPC2, as shown in Fig.S3(b). The dispersion curve reveals the existence of two edge modes localized
within the topological bandgap. The right insets show the field distributions for two edge modes with kx = 0.4(2π/a),
revealing that these two modes are localized in two boundaries. The dispersion relation of the topological interface 1
is depicted in Fig.S3(c), there is one edge mode inside the bandgap. Exchanging the two VPCs leads to the inversion
of valley Chern numbers and further facilitates the inversion of topological edge states (Fig.S3(d)). For the topological
interface 2, the electric fields of these edge modes are localized differently: one at the outer boundary and the other
at the inner boundary.
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FIG. S4. (a) A design of a topological device composed of VPC1 (green region) and VPC2 (orange region), which contains two
parts: a sandwich topological interface (marked by a black dashed box) and a diamond-like topological structure. (b)-(d) Field
profiles for edge modes at different frequencies in the topological device.

We also demonstrate a resembling diamond-like structure composed of both VPC1 (green area) and VPC2 (orange
area) VPCs, as shown in Fig.S4(a). Due to the mirror symmetry of VPCs, the two edges of the rhombus correspond
to topological edge states for topological interfaces 1 and 2, respectively. We simulate the field profiles of field
distributions in this diamond-like structure at different frequencies. As shown in Fig.S4(b)-(d), these edge modes can
be efficiently transmitted to their respective ports within the different frequency spectrum. This design also results
in frequency division functionality, which can be applied to the separation of quantum states.
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We simulate the transmission spectra in Fig.S5(a), which demonstrates the frequency division functionality of our
diamond-like design. Due to the presence of two edge modes for the sandwich topological interface, the phase-matching
intensity distribution of FWM processes depicted in Fig.S5(b) demonstrates two OPPs, including the intra-band OPP
and interband OPP between two edge modes, respectively. Correspondingly, the JSA of the biphoton state generated
from the FWM process with 190 THz pumping is shown in Fig.S5(c). Likewise, there also exist a main region and two
symmetrical bright spots, corresponding to intra-band and interband OPP, respectively. These two OPPs are expected
to be performed as entangled biphoton generation and an OPA process (Supplementary Section II). Furthermore, we
can obtain the JTA of the biphotons from the Fourier transform of the JSA, as shown in Fig.S5(d), leading to a
signal-idler correlation with a bandwidth of 10 ps. More importantly, we have shown that our topological devices that
conduct multiple OPPs can be implemented in valley-Hall kagome and honeycomb lattices. Therefore, we believe
that multifunctional quantum devices can be fabricated in a broader range of topological structures in the future.
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FIG. S5. (a) Normalized electric field monitored by two probes placed at the output ports of the two branches in the diamond-
like structure. (b) Phase-matching intensity distribution of FWM processes in the sandwich topological interface. (c) JSA
distribution and (d) corresponding JTA distribution characterizing the biphoton state generated in the sandwich topological
interface. (e) FWM gain coefficient corresponding to the interband OPP at the 190 THz pump frequency for a 400a length
topological waveguide. (f) Signal gain as a function of pump power. (g) Normalized Schmidt coefficients λn and entanglement
entropy Sk for the biphoton state generated from intra-band OPP. (h) Normalized two-photon spectral distribution at the 190
THz pump frequency.

C. OPA and entangled biphoton generation from different OPPs

In this section, we show that our topological honeycomb lattice can be used to implement two functionalities: OPA
and the generation of entangled photon pairs. First, we consider the OPA through FWM with interband OPP. The
frequency division in the diamond-like structure results in the spatial separation of signal photons, facilitating the
straightforward extraction of amplified optical signals. Figure S5(e) shows the FWM gain coefficient corresponding
to the intra-band OPP at the 190 THz pump frequency for a 400a length topological sandwich waveguide (1 W
pump power). Interband OPP excites a super-narrow bandwidth of significant amplification, with a full width at half
maximum (FWHM) of about 7 GHz. At the center frequency of the gain range, an FWM gain coefficient of up to 30
dB/cm can be achieved. Such a tunable narrow-bandwidth OPA is particularly useful for amplifying signals from a
single-photon source. Fig. S5(f) shows the signal gain as a function of pump power.

In addition, we conduct the generation and control of a frequency-entangled biphoton state originating from the
intra-band OPP. In particular, the pump, signal, and idler modes can all be coupled into the left branch of the
diamond-like topological structure. This setup is advantageous for directly extracting broadband entangled photon
pairs from this boundary. We apply Schmidt decomposition to evaluate the separability of the JSA [8]. Figure S5(g)
displays the distributions of normalized Schmidt coefficients λn and entanglement entropy Sk, respectively. For our
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FIG. S6. Field profiles of the FWM process in the diamond-like VPC structure at the frequencies of the (a) signal mode
(fs = 195.5 THz), (b) pump mode (fp = 190 THz), and (c) idler mode(fi = 184.5 THz), respectively.

topological quantum state, the calculated values for the Schmidt number and entanglement entropy are K = 6.67
and Sk = 3.16, respectively, demonstrating the presence of a high-quality frequency-entangled biphoton state in
the sandwich topological interface. We then calculate the normalized two-photon spectral distribution at the pump
frequency of 190 THz. Figure S5(h) illustrates that the 3 dB bandwidth of the two-photon spectrum is 0.99 THz.
These properties demonstrate a key feature of our high-dimensional topological quantum entangled state.

Furthermore, we perform simulations of the FWM in a diamond-like topological structure with CW pump excitation.
The frequencies for the pump, signal, and idler modes are set at fs = 195.5 THz, fp = 190 THz, and fi = 184.5 THz,
respectively. As illustrated in Fig.S6(a)-(c), the field profiles at the idler frequency demonstrate the FWM process
within the topological edge modes. In particular, due to their different frequencies, the signal mode is coupled to the
left side of the diamond-like structure, while the pump and generated idler mode are directed to the right branch.
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