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Topological quantum optics, an emerging area
of study, holds the potential to bring about sub-
stantial enhancements for integrated quantum de-
vices. Here we propose integrated topological
quantum devices performing various functions
including optical parametric amplification, fre-
quency division, and frequency entangled bipho-
ton generation. We show two distinct edge modes
corresponding to different frequency ranges in
both sandwich kagome and honeycomb topologi-
cal designs that emulate the quantum valley Hall
effect. These two topological edge modes en-
able two types of optical parametric processes
through four-wave mixing, specifically inter-band
and intra-band cases. The devices emulating pho-
tonic valley-Hall insulators allow the frequency
division of two transverse modes, and further-
more, enable the separation of two quantum func-
tionalities - optical parametric amplification and
frequency entangled biphoton state generation.
More importantly, the parametric processes are
inborn topological protected, showing robustness
against sharp bends and disorders. Our proposal
significantly widens the possibilities for robust,
multifunctional topological quantum devices on-
chip, which may find applications in quantum in-
formation processing.

I. INTRODUCTION

The burgeoning field of on-chip quantum light sources
has been undergoing revolutionized development thanks
to the advancements in nano-fabrication technologies.
Significant advancements in reducing size and improving
stability through photonic integrated circuits have played
a pivotal role in enabling the on-chip generation, control-
ling, and generation of quantum light sources [1]. These
improvements have consistently supported more complex
and expansive quantum operations, which are crucial for
the progress in quantum computing [2, 3], communica-
tion [4–6], and sensing [7, 8]. Two key aspects of on-chip
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quantum light sources are the amplification of light sig-
nals and the generation of entangled photon pairs. Imple-
menting on-chip multifunctional quantum capabilities si-
multaneously requires precise dispersion engineering and
specific materials, which, from a certain perspective, is
still challenging.

In parallel, integrating topological phases into quan-
tum systems is enhanced by the robust guidance and ma-
nipulation of light, and holds great potential as a cutting-
edge and promising area of research [9–11]. This ap-
proach is key to maintaining stable generation and trans-
porting of quantum states. Topological phases possess a
topological nature that grants quantum states with ro-
bustness against structural imperfections and disorders.
Notably, there have been significant advancements in this
field, such as the emergence of topological quantum emit-
ters [12, 13], topological quantum interference [14, 15],
topological biphoton states [16–18], and even topological
quantum frequency combs [19, 20]. At the same time,
emergent advances in topological nonlinear optics also
promise topological protection of complex nonlinear pro-
cesses [21–26]. A significant amount of study has been
focused on the development of quantum light sources
within topological optical systems. Nevertheless, the in-
vestigation of multifunctional quantum devices in topo-
logical photonic systems remains unexplored.

Here we demonstrate integrated topological quantum
devices that perform various functions, including optical
parametric amplification (OPA), frequency division, and
the generation of entangled biphotons. We demonstrate
the existence of two separate edge modes in sandwich
kagome and honeycomb topological designs that emulate
the quantum valley Hall (QVH) effect. By employing a
diamond structure, it is possible to couple two separate
edge modes to opposite branches, which allows for the
separation of spatial modes. The presence of two edge
modes in kagome topological photonic crystals (TPCs)
enables four-wave mixing (FWM) processes, leading to
two types of optical parametric processes (OPPs) - one
related to inter-band scenarios and the other to intra-
band scenarios. Importantly, the distinct transmission
paths of these edge modes enable the individual facilita-
tion of quantum OPA and the generation of continuous
frequency entangled biphoton along separate branches.
Besides, we also expand our multifunctional topologi-
cal quantum devices in honeycomb valley photonic crys-
tals (VPCs). Additionally, our quantum processes ex-
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hibit topological protection features, showing robustness
against defects and sharp bends. Our approach expands
the potential for on-chip, robust, and multifunctional
topological quantum devices, opening up new avenues
for exploration in quantum optics.

II. RESULTS

A. Topological edge modes in kagome lattice

The discovery of the photonic kagome lattice offers a
feasible framework for the controllable design of higher-
order valley-Hall edge modes [27, 28]. Here we explore
a two-dimensional topological kagome lattice supporting
the generation and flexible control of photonic topological
quantum states. As depicted in Fig.1(a), the topological
design consists of two kagome lattices with C3 symmetry.
The effective topological transition is performed by ex-
panding or shrinking an unperturbed kagome lattice with
a lattice constant a = 480 nm. Figure 1(b) shows the
band structures for an unperturbed kagome lattice (grey
dots) and an expanded one (blue dots). Due to the high
symmetry of kagome lattices, there appears a Dirac-like
degeneracy at the two high symmetry points (K and K′

valleys) of the Brillouin zone [28]. The deformation of the
unperturbed kagome lattice leads to a complete photonic
bandgap and band inversion mechanism. The breathing
kagome lattice exhibits three mirror symmetries: Mx for
the x axis, and M± for the two lines obtained by rotat-
ing the x-axis by ±2π/3 [29]. The polarization along the
xi axis represents the expectation value of the position
with pi =

1
S

∫
BZ
Aid

2k, where Ai = −i⟨ψ|∂ki
|ψ⟩ dentes

the Berry connection with xi = x, y [29]. The topolog-
ical bulk polarization describes the shift in the average
position of the Wannier center from the center of the
unit cell. It is noted that the topological bulk difference
of shrunken and expanded kagome lattice corresponds to
P = (0, 0) and P = (1/3, 1/3) respectively, which denotes
a trivial and nontrivial case, respectively (Supplementary
Section I).

Due to the bulk–boundary correspondence, the non-
trivial polarization difference leads to topological edge
states localized at boundaries between the shrunken
and expanded kagome lattices. Additionally, for a fi-
nite structure, the distorted kagome lattice is expected
to show higher-order topological states such as zero-
dimensional corner states [28]. We first calculate the
band structure for a TPC supercell composed of trivial
and nontrivial kagome lattices as illustrated in Fig.1(c).
The dispersion curve reveals the presence of two edge
modes that are localized in the topological bandgap. Fur-
thermore, it leads to an exceptionally wide bandwidth
that surpasses 40 THz. The bottom inset illustrates that
these two modes are exclusively confined to the distinct
inner interfaces between two types of kagome lattices.
This behavior arises from the presence of two boundaries
in the sandwich TPC, which correspond to two topo-

logical transitions in the case of trivial-nontrivial-trivial
topology.

We also perform dispersion calculations for two dif-
ferent TPCs including inverted kagome lattices, which
exhibit a single topological interface. As depicted in
Fig.1(d)-(e), both of them exhibit two edge bands lo-
cated within the topological bandgap. However, the elec-
tric field of two edge modes in each TPC is localized at
the outer and inner interfaces, respectively. Note that
the emergence of outer mode is attributed to the ap-
plication of periodic boundary conditions on the outer
boundaries in the simulation model [28]. Correspond-
ingly, exchanging two kagome lattices will lead to the re-
version of topological edge states due to the inversion of
nontrivial polarization difference [29]. The field distribu-
tion and band topologies suggest that the two separate
edge modes found in the sandwich TPC are associated
with the inner boundary states in the other two TPCs.
The mode-matching behavior simplifies the coupling edge
modes from the sandwich TPC to other TPCs, render-
ing the coupling process more straightforward. Due to
the distinct frequency ranges of the two edge modes, the
coupling between different modes achieves a frequency-
dependent filtering capability. In other words, the fre-
quency division characteristic enables the realization of
multifunctional on-chip topological photonic devices, po-
tentially finding applications in areas such as optical
transmission and light source generation.

Accordingly, we analyze a sandwich waveguide (de-
picted as the grey region) alongside a diamond-shaped
hybrid structure consisting of trivial (represented by the
green region) and nontrivial (represented by the orange
region) kagome lattices (Fig.2(a)). It’s important to
highlight that in this design, the edges of the rhom-
bus exhibit distinct topological edge states as a result
of the mirror symmetry of the lattices. There are two
allowed edge modes simultaneously with different fre-
quency ranges for the sandwich TPC region. However,
for the diamond-shaped hybrid structure, the specific
structure contains two edge modes characterized by dis-
tinct frequency ranges. These edge modes can be effi-
ciently transmitted to the left and right branches with
the frequency range of f > 193 THz and f < 193 THz,
respectively.

To get deeper insights into the characteristics of topo-
logical edge modes, we simulate the field profiles in this
diamond-shaped structure at different frequencies. As il-
lustrated in Fig.2(c)-(f), the energy couples to the oppo-
site branch corresponding to different pump frequencies.
Two probes are positioned at the output ports of two
branches to monitor field intensity. Figure 2(b) shows
the simulated transmission spectra of the light, which
clearly reveals the frequency division functionality of our
design. Note that the presence of a frequency gap, where
no energy power is detected at either of the output ports,
arises from the competition between the two edge modes.
Correspondingly, as depicted in Fig.2(d), the light is un-
able to interact with any branch at this specific frequency
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FIG. 1. (a) A scheme of topological design is composed of two types of silicon-based kagome lattices with C3 symmetry. (b)
Band diagrams for an unperturbed kagome lattice (grey dots) and an expanded one (blue dots). Calculated dispersion curves
for (c) sandwich TPC, (d) TPC1, and (e) TPC2, respectively, which are composed of shrunken (d = 0.18a) and expanded
(d = 0.40a) kagome lattices. The bottom insets show the electric field distributions for two edge modes.

of around 193 THz. It is worth mentioning that this
dichroic mirror behavior has the potential to facilitate a
range of innovative topological functionalities.

B. Multiple OPPs in topological device

Thanks to the fascinating functionalities of our
diamond-shaped topological structure, we expect the sta-
ble generation and flexible manipulation of topological
quantum states. As a result of the third-order nonlinear-
ity of silicon, the nonlinear FWM processes generated in
sandwich TPCs may lead to the signal and idler photons.
The energy and momentum conversion equations that
govern the FWM processes are defined as 2ωp = ωs + ωi

and 2kp = ks + ki, where ωp,s,i and kp,s,i represent the
frequencies and wavevectors of the pump, signal, and
idler, respectively. Generally, the Hamiltonian for the
FWM process in our topological waveguide can be writ-
ten as

ĤNL = ĤSPM + ĤXPM + ĤFWM, (1)

where ĤSPM, ĤXPM and ĤFWM denote the self-phase
modulation (SPM), cross-phase modulation (XPM) and

FWM processes, respectively. The SPM and XPM terms
influence the oscillation process Due to the frequency di-
vision of our diamond-shaped topological structure, the
left and right branch corresponds to the OPA process and
entangled biphoton generation respectively (see Supple-
mentary Section II for details).

By matching the frequencies utilized in FWM pro-
cesses with the operating bandwidths of topological edge
states, it becomes possible to implement topological pro-
tection for entangled biphoton states [16–18], and even
quantum frequency combs [19, 20]. The dispersion engi-
neering of topological edge states offers a possible method
for manipulating FWM processes within the topologi-
cal bandgap [16]. Note that the energy conversion of
FWM processes is related to phase-matching intensity
PM = sinc(∆kL

2 ) [30].

The phase-matching intensity distribution of FWM
processes is depicted in Fig.3(a), demonstrating three
distinct phase-matching scenarios. The two main bright
regions correspond to the intra-band OPPs of the two
edge modes themselves. However, besides the intra-band
OPP, an additional phase-matching condition is also ob-
served, corresponding to the inter-band OPP between
two edge modes. The nonlinear interactions between
two edge modes result in mode conversion, which can
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FIG. 2. (a) A scheme of a topological device composed of a sandwich waveguide (grey region) and a diamond-shaped hybrid
structure. (b) Normalized field of the light monitored by two probes positioned at the output ports of two branches of the
diamond-shaped structure. (c)-(f) Field profiles for edge modes at different frequencies in our topological device.

lead to significant correlations between different trans-
verse modes.

By pumping the sandwich topological waveguide with
the frequency of 188 THz, we can calculate the joint
spectral amplitude (JSA) of the biphoton state gener-
ated from the FWM process. Such a biphoton state can
be given by

|Ψ⟩ =
∫ ∫

dωsdωiA (ωs, ωi) â
†
s(ωs)â

†
i (ωi)|0⟩, (2)

where â†ωs
and â†ωs

are creation operators for pho-
tons, and A (ωs, ωi) is the JSA. The JSA is governed
by A (ωs, ωi) = α(ωs+ωi

2 ) sinc(∆kL
2 ), where the pump

spectrum α(ωs+ωi

2 ) and joint phase-matching spectrum

sinc(∆kL
2 ). Our pump is Gaussian with a frequency cen-

ter of fp = 188 THz and full width at half-maximum of
∆fp = 115 GHz.

Consequently, the JSA characterizing biphoton state
generated in sandwich TPCs is plotted in Fig.3(b), where
the main intensity region along the diagonal axis de-
notes a strong signal-idler correlation in the frequency
domain [16]. Notably, two extra bright spots are po-
sitioned symmetrically above and below the central line,
suggesting the presence of inter-band OPP. The spot-like
phase-matching intensity distribution is also proven to be
a perfect case for a heralded single photon generator [30],
and also, its purity can be improved by machine-learning
methods [31, 32]. These points indicate the existence of
frequency correlations resulting from the additional inter-
band OPP interaction between edge mode 1 and edge
mode 2. Note that the signal mode frequency is larger

than 193 THz, therefore the generated signal can pass
through the left branch while the generated idler passes
through the right one. The potential phase-matching
conditions between two different topological edge states
promise many effective solutions for manipulating pho-
tonic topological quantum states.

As a conjugate variable of frequency, we can ob-
tain the joint temporal amplitude (JTA) of biphotons

from the Fourier transformation of JSA by Ã(ts, ti) =
F [A(ωi, ωs)] [32]. The peak intensity of the JTA is lo-
cated at ∆τy = ∆τz = 0, indicating a relative phase
value of ϕ = 0 (Fig. 3(c)). The biphoton state exhibits a
signal-idler time correlation with a bandwidth of 10 ps.
Furthermore, we analyze the photonic topological quan-
tum states by implementing quantum state tomography
at a set of bases. For the construction of quantum state
tomography, the real part of the density matrix is given
by Re(ρ) = |Ψ⟩ ⟨Ψ|, utilizing a basis set comprising 49
frequency divisions. We calculate three parts of the den-
sity matrix Re(ρ) from the JSA of the quantum state
in Fig.3(d)-(f) (corresponding to three dashed boxes in
Fig.3(b)).

C. Inter-band OPP: tunable OPA

Our topological scheme supporting multiple OPPs of-
fers a new approach to manipulating quantum functional
devices. Here we implement an OPA through FWM with
inter-band OPP, the frequency division of the diamond-
shaped structure leads to spatial separation of signal pho-
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density matrix Re(ρ) from the JSA of the quantum state.

tons. This spatial separation behavior allows the direct
extraction of amplified optical signals since the generated
signal could pass through the left branch of the diamond-
shaped structure (fs > 193 THz). We initially investi-
gate the frequency distribution of the signal and idler
modes resulting from the inter-band OPP with different
pump frequencies. As shown in Fig.4(a), the tunable
range of the signal light extends from 193.5 THz to 196
THz, achieving a tunable characteristic of 2.5 THz.

Typically, signal and strong pump modes are coupled
into the topological waveguide, in which the signal power
is amplified via degenerate FWM [33]. The FWM gain

coefficient is given by g =
√
γPp∆k − (∆k/2)

2
with ef-

fective nonlinearity ωpn2/cAeff , in which n2 is Kerr non-
linearity, Aeff is the nonlinear effective area. The effec-
tive amplification in the waveguide requires strict ad-
herence to a specific phase-matching condition due to
the coherent nature of parametric interaction. Figure
4(b) illustrates the FWM gain coefficient corresponding
to intra-band OPP with varying pump frequencies for a
400a length topological waveguide (1 W pump power).
The intra-band OPP allows a super-narrow bandwidth
of large amplification with a half maximum full width
(FWHM) of around 8 GHz. Also, the device can fur-
ther achieve tuning of the amplification region by vary-
ing the input pump light, ranging from 193.5 THz to

196 THz. This tuning process is nonlinear due to the
phase-matching condition. At the central frequency of
the amplification region, the FWM gain coefficient of up
to 30 dB/cm can be achieved, and the FWM gain is flat
during the tuning of the pump frequency. Such OPA with
tunable narrow bandwidth can be applied for amplifying
signals from a single photon source.
Consider the pump wave undergoes SPM, simultane-

ously causing cross-phase modulation XPM on both the
signal and idler modes. Therefore, the nonlinear phase
mismatch caused by SPM and XPM should be taken into
account, and the updated phase mismatch is given by
∆kall = 2γPp −∆k [34], where γ = ωpn2Aeff is the ef-
fective nonlinearity of the topological waveguide, Aeff is
the effective nonlinear interaction area. Neglecting the
optical propagation loss, the observed signal gain gener-
ated via FWM for inter-band OPP can be written as [35]

Gs =
P out
s

P in
s

= 1 +

(
γPp

g
sinh(gL)

)2

, (3)

In Fig.4(c), we plot the signal gain as functions of pump
power for the waveguide length with L = 200a, 400a,
and 600a, respectively. For a topological waveguide with
L = 400a, a peak gain of 5dB can be achieved when
the pump power exceeds 4W. Note that when the gain
of an OPA is large, generated signal photons can un-
dergo significant amplification, reaching macroscopic lev-
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els through a phenomenon known as optical parametric
generation. The expected number of photons at the out-
put is given by ⟨n⟩ = sinh2(gL) ≈ 0.25 exp(2gL) [36].
The detailed quantum analysis of OPA in our topolog-
ical device is shown in Supplementary Section II. Such
a quantum OPA can be used in squeezing light detec-
tion [37] and optical homodyne measurement [38].

D. Inter-band OPP: entangled biphoton state
generation

Furthermore, we can expect the production and ma-
nipulation of a frequency entangled biphoton state de-
rived from the inter-band OPP. Note that all the pump,
signal, and idler modes can couple into the right branch
of the diamond-shaped TPC structure (fs, fi < 193
THz), which is convenient for extracting broadband en-
tangled photon pairs directly at this branch. We em-
ploy Schmidt decomposition to evaluate the separability
of the JSA without considering part of the phase infor-
mation [39, 40]. Figure 5(a)-(b) illustrates the distri-
butions of normalized Schmidt coefficients λn and en-
tanglement entropy Sk, respectively. It is noteworthy
that the Schmidt coefficients λn signify the probability
of acquiring the nth quantum state, with nonzero co-
efficients (greater than 1) indicating the frequency en-
tanglement characteristic [39, 41]. Moreover, the entan-
glement entropy, denoted as Sk = −∑λn log2 λn, and
the Schmidt number, represented by K = (

∑
λ2n)
−1, are

reliable methods for measuring the degree of entangle-
ment [40]. The entanglement of a topological quantum
state can be verified by Sk > 0 or K > 0, where a
higher value of Sk and K indicates a superior quality
of frequency entanglement. For our topological quantum
state, the calculated theoretical values for the Schmidt
number and entropy of entanglement are K = 16.24 and
Sk = 4.42, respectively, which indicates the emergence of
a high-quality frequency entangled biphoton state in our
sandwich TPCs.
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1, 2, 3, 4) for the biphoton state. (d) Normalized two-photon
spectral distribution with varying pump frequencies.

Due to the symmetry between the signal and idler pho-
tons, the eigenfunctions ϕ and ψ in the Schmidt decom-
position have the same form. The initial four eigenfunc-
tions ϕn (n = 1, 2, 3, 4) are shown in Fig.5(c), which indi-
cates the orthogonality of each basis function. Also, the
number of photon pairs produced from the FWM process
is given by

S(ω) = ⟨Ψ|a†s(ωs)a
†
i (ωs)ai(ωs)as(ωs)|Ψ⟩

=
η2

c2

∫
dωs

∫
dωi|A(ωs, ωi)|2,

(4)

where η is a constant term. Correspondingly, we calcu-
late the normalized two-photon spectral distribution with
pump at different frequencies. As shown in Fig.5(d), the
3dB bandwidths of the two-photon spectrum are 1.94,
1.54, 1.22, 0.92, and 0.66 THz, respectively, demonstrat-
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ing the tunability of the spectral bandwidth. This high-
dimensional topological quantum entangled state with
tunable spectral bandwidth enables complex and large-
scale quantum simulations and computations.

Alternatively, the single-photon purity associated with
the factorizability of biphoton states can be implemented
through Schmidt decomposition. Purity plays a crucial
role in achieving high-visibility quantum interferences be-
tween photons emanating from the same source. Gener-
ally, single-photon purity is expressed as Tr(ρ̂2s ) where
ρ̂s = Tri(|Ψ⟩⟨Ψ|) represents the density operator for the
heralded single photon, and Tri is the trace over the idler
mode. The heralded single-photon purity, denoted as
Tr(ρ̂2s ), can be calculated by Tr(ρ̂2s ) = K−1 [42],. Con-
sequently, the single-photon purity for our topological
quantum state is computed as 0.06, corresponding to a
highly inseparable quantum state.

E. Robustness against disorders for FWM
processes

To verify the topological protection of nonlinear FWM,
We simulate the FWM process in the diamond-shaped
TPC structure with CW pump excitation [11, 21] em-
ploying COMSOL Multiphysics software. In our numer-
ical model, we use a point source localized at the input
port to excite topological edge modes. Notably, there
is no input for the idler mode, thereby indicating the
excitation of idler modes and the generation of stimu-
lated FWM processes [11]. Here the frequencies of the

pump, signal, and idler modes were chosen as fs = 196
THz, fp = 188 THz, and fi = 180 THz, respectively. As
depicted in Fig.6(a)-(c), the field profiles of topological
edge modes at the idler frequency provide clear evidence
of the simulated FWM process. Most importantly, due
to the different frequencies, the pump and signal modes
couple into the right branch of the diamond-shaped struc-
ture, while the generated idler mode couples into the left
branch. As a result, photon pairs are separated, with an
idler photon being extracted during the FWM process.

Additionally, we incorporate a diamond-shaped TPC
structure to extend our system’s capacity into a larger
spatial domain, enabling enhanced manipulation of the
transmission routes of photonic topological quantum
states. As depicted in Fig.6(d)-(f), within the blue area,
a rod’s position is randomly moved by distances between
-0.1a and 0.2a (left branch), and a rod is randomly re-
moved (right branch). The idler mode generated via
FWM processes also exhibits strong localization along
arbitrary topological interfaces. These results reveal that
the topological nature of the QVH effect brings robust-
ness to the FWM process against sharp bends and de-
fects. These intriguing behaviors enable the manipula-
tion of the two-photon state’s path and the flexible ex-
traction of individual photons.
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FIG. 7. Field profiles of the FWM process in the diamond-shaped TPC structure at the frequencies of the (a) signal mode
(fs = 196 THz), (b) pump mode (fp = 188 THz), and (c) idler mode(fi = 188 THz), respectively. Field profiles of the
stimulated FWM process in the expanded diamond-shaped TPC structure at the frequencies of the (a) signal mode (fs = 196
THz), (b) pump mode (fp = 188 THz), and (c) idler mode(fi = 188 THz), respectively.

III. DISCUSSION

A. Multiple OPPs in honeycomb lattice

We also consider the realization of multifunctional
quantum devices in honeycomb VPCs through multi-
ple OPPs. The valley-Hall honeycomb lattice has been
demonstrated as an effective approach to achieving topo-
logically protected edge states [43, 44], and there is a
potential for realizing multiple edge modes. The VPCs
are composed of a honeycomb lattice featuring circular
holes with a lattice constant of a = 480 nm. The un-
perturbed unit cells (d1 = d2) demonstrate a C6 sym-
metry, resulting in the degeneration of K and K′ valleys
in the Brillouin zone. However, breaking the inversion
symmetry (d1 ̸= d2) leads to a complete bandgap forma-
tion near the Γ point [43, 44]. The valley Chern num-
bers of VPC1 and VPC2 are theoretically calculated as
CK/K′ = ±1/2 [43, 44], respectively (Supplementary Sec-
tion III).

Similarly, we calculate the band structure of a sand-
wich VPC supercell, comprising both nontrivial and triv-
ial honeycomb lattices as shown in Fig.7(a). The disper-
sion curve reveals the existence of two edge modes local-
ized within the topological bandgap. Figure 7(b) displays

the field distribution for two valley kink states with kx =
0.4(2π/a), revealing that these two modes are localized
in two interfaces respectively. We also simulate the trans-
mission spectra in Fig.7(c), which demonstrates the fre-
quency division functionality of our diamond-shaped de-
sign. Thanks to the two edge modes for sandwich VPCs,
the phase-matching intensity distribution of FWM pro-
cesses depicted in Fig.7(d) demonstrates two OPPs, in-
cluding the intra-band OPP and inter-band OPP be-
tween two edge modes, respectively. Correspondingly,
the JSA of the biphoton state generated from the FWM
process with 190 THz pumping is shown in Fig.7(e).
Likewise, there also exist a main region and two sym-
metrical bright spots, corresponding to intra-band and
inter-band OPP, respectively. These two OPPs are ex-
pected to be performed as entangled biphoton genera-
tion and an OPA process (Supplementary Section III).
Further, we can obtain the JTA of biphotons from the
Fourier transformation of JSA as illustrated in Fig.7(f),
leading to a signal-idler correlation with a 10 ps band-
width. More importantly, we have shown that our topo-
logical devices that conduct multiple OPPs can be im-
plemented in valley-Hall kagome and honeycomb lattices.
Therefore, we believe that multifunctional quantum de-
vices can be fabricated in a broader range of topological
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structures in the future.

IV. CONCLUSION

In this work, we demonstrate on-chip topological quan-
tum optical devices capable of performing multiple func-
tions including OPA, frequency separation, and entan-
gled biphoton generation. We show that there exist two
distinct edge modes corresponding to different frequency
ranges in sandwich TPCs. By employing a diamond
structure, we can couple these two edge modes into sepa-
rate branches to achieve the separation of spatial modes.
Due to the coexistence of two edge modes, the FWM pro-
cess enables two types of OPPs, corresponding to inter-
band and intra-band cases, respectively. More impor-
tantly, thanks to distinct transmission paths of the edge
modes, these two OPPs can individually facilitate quan-
tum OPA and the generation of continuous frequency-

entangled photon pairs along separate branches. More-
over, these quantum processes exhibit topological protec-
tion features, demonstrating robustness against defects
and sharp bends. Our proposal offers increased possibili-
ties for on-chip robust, multifunctional topological quan-
tum devices.
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I. TOPOLOGICAL KAGOME LATTICE

We consider a two-dimensional infinite kagome lattice that exhibits C3 lattice symmetry (lattice constant a), as
shown in Fig.S1. We apply the Tight-Binding model to the lattice, considering only the nearest hopping term in the
model. As a result, the Hamiltonian model in the momentum space can be given by [1]

Ĥ0 =




0 K + jei(
1
2kx+

√
3

2 ky)a K + je−i(
1
2kx−

√
3

2 ky)a

K + je−i(
1
2kx+

√
3

2 ky)a 0 K + je−ikxa

K + jei(
1
2kx−

√
3

2 ky)a K + jeikxa 0


 , (S1)

where K and J denote the intra-cell coupling (red dotted line) and inter-cell coupling (blue dotted line), respectively,
as depicted in Fig.S1(a). We can write this Hamiltonian in a more general form:

Ĥ0 =




0 a1 b1
a2 0 c1
b2 c2 0


 , (S2)

Next, the generalized chiral symmetry operator in kagome lattices can be described as [1]:

Γ3 =



1 0 0
0 ei2π/3 0
0 0 e−i2π/3


 , (S3)

where Γ3 is the unitary chiral operator with three eigenvalues of 0, ei2π/3, and e−i2π/3. For the original Hamiltonian
H0, the transformed Hamiltonians by the unitary chiral operator are given by [2]

Ĥ1 = Γ3 H0Γ
−1
3 =




0 e−i2π/3a1 ei2π/3b1
ei2π/3a2 0 e−i2π/3c1
e−i2π/3b2 ei2π/3c2 0


 , (S4)

Ĥ2 = Γ3H1Γ
−1
3 =




0 ei2π/3a1 e−i2π/3b1
e−i2π/3a2 0 ei2π/3c1
ei2π/3b2 e−i2π/3c2 0


 . (S5)

Therefore, these Hamiltonians satisfy Ĥ0 + Ĥ1 + Ĥ2 = 0, which reveals that the kagome lattice has generalized chiral
symmetry. The generalized chiral symmetry promises that the sum of the respective eigenenergies is equal to zero.
The current Hamiltonian is analogous to the Hamiltonian in the Su-Schrieffer-Heager (SSH) model. The introduction
of long-range interactions, despite disrupting the chiral symmetry, will lead to a change of topological invariant (bulk
polarization).
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FIG. S1. (a) Shrunken and (b) expanded kagome lattice for trivial and nontrivial cases. (c) Electric field distributions at point
K in the first Brillouin zone for two kagome lattices.

To describe the band topology of the kagome lattice with complete symmetry, the bulk polarization is defined as [3]

ps = 1/Nk

∑

j,kt

vjs(kt), (S6)

where vjs(kt) is the eigenvalue (also denoted as Wannier center) of the Wilson loop. And the eigenvalue problem of

the Wilson loops is Wks+2π←ks,kt
|νk⟩j = ei2πν

j
s(kt)|νk⟩j , in which ks, kt = 0, δk, . . . , (Nk − 1)δk, δk = 1

Nk

4π√
3a

and j

is the index of the occupied bands. Hence, the Wannier bands associated with the lowest energy band of kagome
lattices can be calculated [2]. When the intra-cell coupling K is larger than inter-cell coupling J (shrunken lattice),
the bulk polarization is calculated as 0, which denotes a trivial case (Fig.S1(a)). However, when the intra-cell coupling
K is smaller than inter-cell coupling J (expanded lattice), the calculated bulk polarization is 1/3, which denotes a
nontrivial case (Fig.S1(b)). Therefore, according to the bulk–boundary correspondence, the difference in nontrivial
polarization gives rise to topological edge states that localize at the boundaries between the contracted and expanded
kagome lattices. As shown in Fig.S1(c), the electric field distributions at point K in the first Brillouin zone for two
kagome lattices also reveal the topological transition.

II. THEORETICAL ANALYSIS OF TWO OPPS IN TOPOLOGICAL DEVICE

For the FWM process in our topological device, it contains self-phase modulation (SPM), cross-phase modulation

(XPM), and FWM processes. The general nonlinear Hamiltonian can be written by ĤNL = ĤSPM + ĤXPM + ĤFWM,
we can write all the terms as

ĤNL = −ℏγ[
1

2
(â†pâ

†
pâpâp + â†sâ

†
sâsâs + â†i â

†
i âiâi)

+ 2(â†pâ
†
sâpâs + â†pâ

†
i âpâi + â†sâ

†
i âsâi)

+ (â†sâ
†
i âpâp + â†pâ

†
pâsâi)]

(S7)

where âp,s,i and â
†
p,s,i and a

†
s,ωi

are the annihilation operator and creation operators respectively, the effective nonlin-

earity is γ = ωpn2/cAeff , and n2 is the Kerr nonlinearity of silicon with a value of 5× 10−18 [4], Aeff is the nonlinear
effective area. The final term (FWM process) is crucial for the energy transfer among the three modes. The SPM
and XPM terms significantly influence the oscillation process, as well as the noise and entanglement characteristics
of the system. Note that we only consider the FWM process generated in sandwich topological waveguides with a
length L = 400a. However, the FWM processes in two branches of the diamond-shaped structure are neglected since
the nonlinear interaction length is small.
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A. Left branch: OPA process generated from inter-band OPP

In our setup, we employ optical parametric amplification (OPA) through FWM, combined with inter-band optical
parametric processes (OPP). This approach, utilized within the diamond-shaped structure, results in the spatial
separation of signal photons to the left branch. For the OPA process, we analyze the evolution of quantum states

by solving the Heisenberg equation
dâj

dt = i
ℏ [Ĥ, âj ], j ∈ {p, s, i}. By substituting Eq.S7, we can calculate that the

updated Heisenberg equations for the signal and idler modes are

dâp
dt

= iγ[(â†pâp + 2(â†sâs + â†i âi)âp + âsâiâ
†
p]

dâs
dt

= iγ[(â†sâs + 2(â†pâp + â†i âi)âs + â†i âpâp]

dâi
dt

= iγ[(â†i âi + 2(â†pâp + â†sâs)âi + â†sâpâp]

(S8)

We may explore the interaction of three stationary, co-polarized waves at regular frequencies, characterized by their
slowly varying electric fields with complex amplitudes Ap(x), As(x), and Ai(x), respectively. The total transverse
field E(x, y, z) propagating along the sandwich topological waveguide (x-axis) is given by [5]

E(x, y, z) =f(y, z)A(x)

=f(y, z)
1

2
[Ap(x)× exp(ik0x− iω0t) +As(x) exp(ik1x− iω1t)

+Ai(x) exp(ik2x− iω2t) + h.c.],

(S9)

in which h.c. refers to the complex conjugate. The f(y, z) denotes a common transverse modal profile, which is
assumed to be identical for all three waves propagating along the waveguide. According to Eq.S8, we can derive three
coupled equations for the classicized field amplitudes of the three waves as [6]

dAp

dx
= iγ[(|Ap|2 + 2(|As|2 + |Ai|2))Ap + 2AsAiA

∗
p exp(i∆kx)],

dAs

dx
= iγ[(|As|2 + 2(|Ai|2 + |Ap|2))As +A∗iA

2
p exp(−i∆kx)],

dAi

dx
= iγ[(|Ai|2 + 2(|As|2 + |Ap|2))Ai +A∗sA

2
p exp(−i∆kx)].

(S10)

Note that the first two terms on the right-hand side of Eq.S10 denote the nonlinear phase shifts due to SPM and
XPM, respectively. The last term denotes energy transfer between the interacting waves. By replacing the amplitude
of the light field by Aj(x) =

√
Pj exp(iϕj) for j ∈ {p, s, i}, Eq.S10 can be rewritten as [6]

dPp

dx
= −4γ

(
P 2
pPsPi

)1/2
sin θ,

dPs

dx
= 2γ

(
P 2
pPsPi

)1/2
sin θ,

dPi

dx
= 2γ

(
P 2
pPsPi

)1/2
sin θ,

(S11)

and

dθ

dx
= ∆k + γ(2Pp − Ps − Pi) + γ

[(
P 2
pPi/Ps

)1/2
+
(
P 2
pPi/Ps

)1/2 − 4 (PsPi)
1/2
]
cos θ. (S12)

Neglecting the third term in Eq.S12, an approximated result for relative phase difference is given by [5]

dθ

dx
≈ ∆k + γ(2Pp − Ps − Pi) ≈ ∆k + 2γPp. (S13)

Eq.S10 describes the amplification of a weak signal propagating along the topological waveguide. To solve the
equations, let dA0

dx = 0, then we can get an analytical solution [7]

Ps(L) = Ps(0)

(
1 +

[
γPp

g
sinh(gL)

]2)
, (S14)
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Pi(L) = Ps(0)

[
γPp

g
sinh(gL)

]2
, (S15)

where L is the propagating length of the topological waveguide along x axis. The parametric gain coefficient is given
by

g2 =
[
(γPp)

2 − (κ/2)2
]
= −∆k

[
∆k

4
+ γPp

]
. (S16)

Furthermore, the single gain can be given by [5]

Gs =
P out
s

P in
s

= 1 +

(
γPp

g
sinh(gL)

)2

. (S17)

B. Right branch: entangled biphoton state generated from intra-band OPP

After tracing out of inter-band OPP from the FWM process in our diamond-shaped structure (left branch), the
FWM process propagating along the right branch can be considered as an entangled biphoton state generator. Here we
start with the nonlinear Hamiltonian in Eq.S7, by replacing neglecting the weak terms and pump term 1

2 (â
†
pâ
†
pâpâp),

the Hamiltonian of the FWM process can be rewritten by

ĤNL ≈ −ℏγ[2(â†pâ†sâpâs + â†pâ
†
i âpâi) + (â†sâ

†
i âpâp + â†pâ

†
pâsâi)]. (S18)

Here we apply the electric field to replace the operators as

ĤNL ≈ −ℏγ[2(Ê+
p Ê
−
p Ê

+
s Ê
−
s + Ê+

p Ê
−
p Ê

+
i Ê
−
i ) + (Ê+

s Ê
+
i Ê
−
p Ê
−
p + Ê−s Ê

−
i Ê

+
p Ê

+
p )], (S19)

in which the pump field operator is considered as the classical field

Ê(+)
p (x, t) = Ê−∗p (x, t) = Ape

i(kpx−ωpt), (S20)

and the quantized field of signal and idler modes are

Ê
(−)
j (x, t) =

∫
dωjA

∗
je
−i(kjx−ωjt)â†j(ωj), j = s, i, (S21)

where the amplitude of the field is Aj =
√

ωj

4πε0njcAeff
. By substituting Eq.S20 and Eq.S21 into Eq.S19, we can

obtain the Hamiltonian as

ĤNL = −ℏη
∫ ∞

−∞
dωs

∫ ∞

−∞
dωie

−i(2kp−ks−ki)xe(2ωp−ωs−ωi)tâs(ωs)âi(ωi) + h.c., (S22)

where the constant term is

η =
AP

2γ

4πϵ0cAeff

√
ωsωi

nsni
. (S23)

we can calculate the biphoton state generated from the FWM process via first-order perturbation theory by |Ψ⟩ =
1
iℏ
∫∞
−∞ dtHNL|0⟩, therefore the biphoton state is given by

|Ψ⟩ = η

∫ ∫
dωsdωiα(

ωs + ωi

2
) sinc(

∆kL

2
)â†s(ωs)â

†
i (ωi)|0⟩,. (S24)

in which the spectrum α(ωs+ωi

2 ) = 2πδ(ωs+ωi− 2ωp), and the joint spectral amplitude (JSA) of biphoton state is [8]

A (ωs, ωi) = α(
ωs + ωi

2
) sinc(

∆kL

2
). (S25)

We use Schmidt decomposition to confirm the entanglement of photon pairs generated via intra-band OPP. The
JSA can be decomposed by[8]:
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A(ωs, ωi) =
N∑

n=1

√
λnψn(ωs)ϕn(ωi), (S26)

where λn (N ∈ N) represents the Schmidt coefficient, ψn and ϕn are are orthonormal functions of ωs and ωi in the
Hilbert space. λn, ψn and ϕn are connected by these equations

∫
K1(ω, ω

′)ψn(ω
′)dω′ = λnψn(ω),

∫
K2(ω, ω

′)ϕn(ω
′)dω′ = λnϕn(ω),

(S27)

where K1 and K2 are the one-photon spectral correlations, and ψn and ϕn are corresponding eigenfunctions. When
the Schmidt number N > 1, the biphoton state is considered frequency entangled. The equations can be rewritten as

K1(ω, ω
′) =

∫
A(ω, ωi)A∗(ω′, ωi)dωi,

K2(ω, ω
′) =

∫
A(ωs, ω)A∗(ωs, ω

′)dωs,

(S28)

K1 and K2 form s× s and i× i matrices respectively. The eigenfunctions can be represented as:

K1ψn = λnψn,

K2ϕn = λnϕn,
(S29)

Eq.S26 can be rewritten as

A =
N∑

n=1

√
λnψnϕ

T
n , (S30)

Using Eq.S30, the Schmidt coefficients λn are determined by solving the eigenvalue equations. Notably, frequency
entanglement in biphoton states is confirmed when there is more than one non-zero Schmidt coefficient λn, or when
the entanglement entropy Sk > 0 [8]. Additionally, the entropy of entanglement Sk and Schmidt number K are useful
metrics to quantify the degree of entanglement [8]

Sk = −
N∑

n=1

λn log2 λn, (S31)

K = −

(
N∑

n=1
λn

)2

N∑
n=1

λ2n

. (S32)

The high values of K = 16.24 and Sk = 4.42 suggest a high quality of high-dimensional frequency entanglement.

III. IMPLEMENTING MULTIPLE OPPS IN HONEYCOMB LATTICE

A. Topological honeycomb lattice

We then consider conducting multiple OPPs in honeycomb lattices that emulate the QVH effect. We study the
valley kink states in topological honeycomb lattices, for undisturbed unit cells with C6 lattice symmetry, degenerate
Dirac points appear in the K and K′ valleys. The effective Hamiltonian near the K (K′) point is expressed as [9–11]

HK/K′ = τzνD(σxδkx + σyδky). (S33)
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FIG. S2. (a) Band diagrams for an unperturbed honeycomb lattice (grey dots) and an expanded one (blue dots). Dispersion
relations for (b) TPC1 and (c) TPC2 respectively, which are composed of shrunken (d = 0.24a) and expanded (d = 0.36a)
honeycomb lattices. The right insets show the electric field distributions for different edge modes.

Here, vD represents the group velocity, and σx and σy are the Pauli matrices. δk⃗ = k⃗− k⃗K/K′ indicates the deviation
of the wavevector. Introducing unit cell distortion (d1 ̸= d2), the Hamiltonian can be modified as follows

HK/K′ = τzνD(σxδkx + σyδky) + τzγσz. (S34)

In this expression, τz = 1(−1) denotes the K (K′) valley pseudospin, σx,y,z denotes the Pauli matrices, νD is the group
velocity, and γ is the strength of the symmetry-breaking perturbation. The perturbations γ1 and γ2 are defined as
γ1 ∝

[∫
B
εzds−

∫
A
εzds

]
(VPC1) and γ2 ∝

[∫
D
εzds−

∫
C
εzds

]
(VPC2), respectively, where

∫
εzds is the integration

of the dielectric constant εz at the positions of A and B, respectively. For the given parameters, dA = 0.36a and
dB = 0.24a, resulting in

∫
B
εzds <

∫
A
εzds. Moreover, we find |γ1| > |γ2|.

This implies that the modes at the K and K′ valleys exhibit opposite circular polarizations: left-handed circular
polarization (LCP) and right-handed circular polarization (RCP), respectively. The valley Chern numbers of VPCs
are determined by [10, 11]:

CK/K′ =
1

2π

∫

HBZ

ΩK/K′(δk⃗)dS = ±1/2, (S35)

where Ω = ∇k × A⃗(k) is the Berry curvature, and A⃗(k) is the Berry connection. This integration region covers half
of the Brillouin zone. Thus, the disparity in the valley Chern numbers of the system is calculated as |CK/K′ | = 1,
confirming the topological characteristics of VPCs. These findings indicate that the oscillation patterns at the K and
K′ valleys show different polarizations. Specifically, the K valley exhibits a left-handed circular polarization (LCP)
while the K’ valley shows a right-handed circular polarization (RCP).

B. Multiple OPPs in VPCs

In VPCs, topologically protected edge states, also known as valley kink states [5], are observable at the boundary
between VPC1 and VPC2. As depicted in Fig.S2(a), we observe two opposite valley kink states, which are linked
to a different valley. Only one mode exists for a specific wavevector within the bandgap, and it is localized at the
inner interface. Exchanging the two VPCs leads to the inversion of valley Chern numbers and further facilitates the
inversion of topological edge states. Correspondingly, for the reversed VPC, the electric fields of these edge modes are
localized differently: one at the outer interface and the other at the inner interface (Fig.S2(b)-(c)). Similarly, mode
matching simplifies the coupling of edge modes from the sandwich VPC to other VPCs, offering convenience for the
implementation of multiple OPPs.

In our study, we demonstrate a resembling diamond-shaped structure composed of both trivial (green area) and
nontrivial (orange area) VPCs, as illustrated in Fig.S3(a). Due to the mirror symmetry of VPCs, the two edges
of the rhombus correspond to two topological edge states for distinct VPCs. We simulate the field profiles of field
distributions in this diamond-shaped structure at different frequencies. As shown in Fig.S3(b)-(d), these edge modes
can be efficiently transmitted to their respective ports within the different frequency spectrum. This design also
results in frequency division functionality, which can be applied to separating quantum states.

We use a Gaussian pump with a central frequency of fp = 190 THz and a full width at half-maximum (FWHM) of
∆fp = 115 GHz. The JSA is depicted in Fig.7(e) in the main text, where the main intensity along the anti-diagonal
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FIG. S3. (a) A design of a topological apparatus featuring a sandwich waveguide (depicted in grey) and a diamond-shaped
setup. (b)-(d) Field profiles for edge modes at different frequencies in our topological device.

axis indicates a signal-idler frequency correlation, and two additional bright spots correspond to inter-band OPP
interaction between two edge modes.

C. OPA and entangled biphoton generation from different OPPs

In this section, we show that our topological honeycomb lattice can be utilized to implement two functionalities:
OPA and the generation of entangled photon pairs. First, we consider the OPA through FWM with inter-band OPP.
The frequency division in the diamond-shaped structure results in the spatial separation of signal photons, facilitating
the straightforward extraction of amplified optical signals. We first examine the frequency distribution of signal and
idler modes resulting from inter-band OPP under varying pump frequencies. Figure S4(a) shows the FWM gain
coefficient for intra-band OPP at the 190 THz pump frequency in a 400a length topological sandwich waveguide (1
W pump power). Intra-band OPP excites a super-narrow bandwidth of significant amplification, with a full width at
half maximum (FWHM) of about 7 GHz. At the central frequency of the amplification region, a FWM gain coefficient
of up to 30 dB/cm is attainable. Such OPA with a tunable narrow bandwidth is particularly useful for amplifying
signals from a single photon source. In Fig. S4(b), the signal gain is illustrated as a function of the pump power.
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FIG. S4. (a) FWM gain coefficient for intra-band OPP at the 190 THz pump frequency for a 400a length topological waveguide.
(b) Signal gain as a function of the pump power. (c) Normalized Schmidt coefficients λn andentanglement entropy Sk for the
biphoton state generated form inter-band OPP. (d) Normalized two-photon spectral distribution at the 190 THz pump frequency.

In addition, we conduct the generation and control of a frequency-entangled biphoton state originating from the
inter-band OPP. Notably, the pump, signal, and idler modes can all be coupled into the left boundary of the diamond-
shaped TPC structure. This setup is advantageous for directly extracting broadband entangled photon pairs from
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FIG. S5. Field profiles of the FWM process in the diamond-shaped VPC structure at the frequencies of the (a) signal mode
(fs = 195.5 THz), (b) pump mode (fp = 190 THz), and (c) idler mode(fi = 184.5 THz), respectively.

this boundary. We apply Schmidt decomposition to assess the separability of the JSA [8]. Figure S4(c) displays the
distributions of normalized Schmidt coefficients λn and entanglement entropy Sk, respectively. For our topological
quantum state, the theoretical values calculated for the Schmidt number and entanglement entropy are K = 6.67
and Sk = 3.16, respectively, demonstrating the presence of a high-quality frequency-entangled biphoton state in our
sandwich VPCs. We then calculate the normalized two-photon spectral distribution at the pump frequency of 190
THz. Figure S4(d) illustrates that the 3dB bandwidth of the two-photon spectrum is 0.99 THz. These features show
a key feature of our high-dimensional topological quantum entangled state.

Furthermore, we conduct simulations of the FWM in a diamond-shaped VPC structure with CW pump excitation.
The frequencies for the pump, signal, and idler modes are set at fs = 195.5 THz, fp = 190 THz, and fi = 184.5 THz,
respectively. As illustrated in Fig.S5(a)-(c), the field profiles at the idler frequency demonstrate the FWM process
within the topological edge modes. Notably, due to their different frequencies, the signal mode is coupled to the left
side of the diamond-shaped structure, while the pump and generated idler mode are directed to the right side.
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