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Abstract
As a beam splitter, multi-value phase grating (MVPG) has a higher diffraction efficiency than
the traditional Damman grating (DG) due to its increased number of phase values within one
period of the grating. In this paper, two MVPGs are numerically designed within a 120 µm ×
120 µm area, which generate 4 ∗ 4 and 5 ∗ 5 focal spot arrays in the far field. Both gratings are
fabricated by direct laser writing (DLW) technology. Their diffraction efficiencies reach 68.58%
and 63.4%, respectively. To compare, DGs with the same size and focal spot arrays are designed
and fabricated, whose diffraction efficiencies are tested to be 29.55% and 35.04%, respectively.
The results demonstrate the better optical properties of multi-value phase gratings and the
capability of DLW in three-dimensional nano-scale diffractive optical element fabrication.

Keywords: multi-value phase grating, diffractive optical element, direct laser writing,
focus spot array, diffraction efficiency
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1. Introduction

Diffractive optical element (DOE) is a device made by trans-
parent materials with complexmorphology, which can achieve
many different optical functions by designing corresponding
surface profiles through the diffractive optical theory [1–4].
One application of DOE is a beam splitter, which is widely
used in parallel micro-processing, creating 3D spot arrays,
optical vortex, multiple imaging, and communication multi-
plexing [5–13]. Through different surface designs, the beam
splitter can either generate multiple spots at different focal
depths or a spot array on the same focal plane from a single
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collimated and coherent beam. The traditional beam splitter
utilizes Damman grating (DG) [14–19], which is a typical bin-
ary phase grating and has only two phase values, i.e. 0 and
π. The binary phase design simplifies the fabrication process,
but also limits its theoretical diffraction efficiency. To increase
the diffraction efficiency, multi-value phase grating (MVPG)
[20–22] is proposed, which has more phase values within one
period of the grating.

One method to implement a beam splitter is to use a spa-
tial light modulator (SLM). A focal spots array with high
uniformity and high diffraction efficiency can be generated
by obtaining the phase hologram through the corresponding
algorithm and loading it on the SLM [23]. The SLM is very
flexible due to its programmability and its phase hologram can
be easily changed, and researchers have already used SLM
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to create a focal spots array and applied it to parallel laser
processing [24]. However, due to the high cost and complex
optical path of the SLM, it is not conducive to integration and
large-scale commercial applications. Therefore, it is neces-
sary to develop some fabrication methods to manufacture the
micro-nano beam splitter.

Traditional fabricationmethods usually rely on photomasks
and require multiple lithographic steps and etching processes,
such as in electron beam etching [25], focused ion beam etch-
ing [26], grayscale lithography [27] and so on. Thus they are
complicated, costly and difficult to deal with complex and ver-
satile surface profiles. To solve these problems, we use amask-
less 3D lithography technology based on two-photon poly-
merization (TPP), i.e. direct laser writing (DLW). Due to its
low cost, high precision and high flexibility, the DLW has
been widely used in the fabrication of various micro-optical
components [28–30].

In this paper, we design and optimize four MVPGs with
different focal spot arrays. We fabricate two of them with
4 ∗ 4 and 5 ∗ 5 focal spot arrays by DLW. The diffraction
efficiency is 68.58% and 63.4% respectively, and the uni-
formity of spot intensity is 96.34% and 95.17%. In com-
parison, DGs with focal spot arrays of 4 ∗ 4 and 5 ∗ 5
are also fabricated by DLW. The diffraction efficiency is
29.55% and 35.04% respectively, and the uniformity of spot
intensity is 74.66% and 71.02%. The results demonstrate that
MVPG has better optical performances than the traditional
DG.

2. Design of MVPG

Figures 1(a) and (b) show the phase distribution of DG and
MVPG, respectively. A period of DG consists of only two
phase values with different distribution widths, while a period
of MVPG has multiple different phase values with the same
distribution width. The transfer function of one-dimensional
MVPG can be expressed as equation (1) [21]:

T(x) = comb(x)⊗
N∑

n=1

tn(x) (1)

where the symbol ‘⊗’ denotes the convolution operator, the
tn represents the transmittance function of one-dimensional
MVPG which can be written as equation (2):

tn (x) = rect
(
x− (2n− 1)/2N

1/N

)
exp(iϕn) (2)

where one period is evenly divided into N equal parts and the
ϕn determines the phase distribution of the MVPG. The Four-
ier transform of the tn can be expressed as equation (3):

Γ{tn (x)}=
i

2πv
{exp(−i2πvn)− exp [−i2πv(n− 1)]}

× exp(iϕn) (3)

where v represents the spatial frequency. The correspond-
ing Fourier coefficients Aj can be written as equation (4):

Aj =






1
N

N∑
n=1

exp(iϕn), j= 0

i
2jπ

N∑
n=1

[
exp(−i2jπ n

N )− exp
(
−i2jπ n− 1

N

)]
exp(iϕn), j $= 0

(4)

where j is the diffraction order. The diffraction efficiency of
MVPG is defined as equation (5):

η =
β∑

j

Ij =
β∑

j

Aj ·A∗
j (5)

where Ij is the intensity of the jth diffraction order, β is the
number of focal spot, and the symbol ‘∗’ represents complex
conjugate. The uniformity of the focal spot can be defined as
equation (6):

ψ = 1− max(Ij)−min(Ij)
max(Ij)+min(Ij)

. (6)

The simulated annealing algorithm is used to optimize the one-
dimensional MVPG and the optimization evaluation function
is defined as equation (7):

φ=

β∑
j=1

(Ij− Iav)
2

β∑
j=1

Ij

(7)

where Iav can be expressed as equation (8):

Iav =
1
β




β∑

j=1

Ij



 . (8)

When the value of φ is smaller, the diffraction efficiency and
uniformity of the MVPG will be higher, which represents
that the optimization result is better. Through the optimized
design of the simulated annealing algorithm, we can obtain
the optimal phase number N and phase values ϕn within one
period of the MVPG, in order to maximize the diffraction
efficiency and uniformity of the MVPG. Table 1 shows the
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Figure 1. Phase distribution of two gratings. (a) DG with binary
phase values. (b) MVPG with six phase values.

Table 1. Optimization results.

β N ϕn(π) η Ψ

1 ∗ 2 4 0 0 1 1 81.10% >99%
1 ∗ 3 3 0.71 1.97 1.97 76.4% >99%
1 ∗ 4 6 0.05 0.53 0.05 1.05 1.53 1.05 85.80% >99%
1 ∗ 5 4 0.42 0.76 1.69 0.76 84.30% >99%

optimization results of one-dimensional MVPG with focal
spot arrays of 1 ∗ 2, 1 ∗ 3, 1 ∗ 4 and 1 ∗ 5.

The MVPG can be divided into odd type and even type
according to the number of focal spots. For the odd type
MVPG, each unit in the period can have its own independ-
ent phase value. For the even type MVPG, it has a half-
period inversion structure, and the phase of the second half
period is the π-phase inversion of the first half of the phase
distribution. Because the grating structure of the even type
MVPG eliminates the sensitivity of zero-order diffracted light
to manufacturing errors, the even type MVPG has a higher
spot uniformity than odd type MVPG. In table 1, we can
see that the diffraction efficiency of one-dimensional optim-
ized MVPG is more than 75% when the spot uniformity is
maintained at 99%. By adjusting N and ϕn, the theoretical
diffraction efficiency of one-dimensional MVPG with 1 ∗ 4
and 1 ∗ 5 focal spot arrays can reach 85.8% and 84.30%,
respectively. After optimization, the phase distributions of
two one-dimensional MVPGs are shown in figures 2(a) and
(b). By using MATLAB numerical simulation calculation, the
simulation results of focal spot arrays and the uniformity of
spot intensity of two one-dimensional MVPGs are obtained,
as shown in figures 2(c)–(f). Obviously, the optimized one-
dimensionalMVPG can generate a one-dimensional focal spot
array with high uniformity and high diffraction efficiency.

Without any new additional principle or theory, one-
dimensional MVPG can be reasonably extended to two-
dimensional MVPG. The two-dimensional MVPG can

Figure 2. (a) and (b) When the number of focal spots are 1 ∗ 4 and
1 ∗ 5, the phase distribution of two one-dimensional MVPGs;
(c) and (d) The spot array generated by two one-dimensional
MVPGs simulation; (e) and (f) Intensity distribution of spots along
lines X.

be regarded as the superposition of two orthogonal one-
dimensional MVPGs. Figures 3(a) and (b) show the phase
distribution of two-dimensional MVPG with 4 ∗ 4 and 5 ∗ 5
focal spot arrays. The grating sizes are 120 µm × 120 µm.
Also by usingMATLAB numerical simulation calculation, the
simulation results of focal spot arrays and the uniformity of
spot intensity of two two-dimensional MVPGs are obtained,
as shown in figures 3(c)–(f). The simulation results show that
the two-dimensional MVPG can generate a two-dimensional
focal spot array with high diffraction efficiency and high uni-
formity. In the next section, we will use DLW technology
to fabricate these two two-dimensional MVPGs, and experi-
mentally demonstrate their optical performance.

3. Manufacture of MVPG

The height of each unit of the MVPG can be calculated by
equation (9):

d=
ϕ

k(n1 − n0)
(9)

where n1 and n0 are the refractive indexes of the exposure
material and the air at the wavelength of the incident light,
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Figure 3. (a) and (b) When the number of focal spots are 4 ∗ 4 and
5 ∗ 5, the two-dimensional phase distribution of MVPG; (c) and
(d) The spot array generated by MVPG simulation; (e) and
(f) Intensity distribution of spots along lines X.

respectively; ϕ is the designed phase value of the corres-
ponding unit; k is the wave number of the incident light.
We use 1550 nm incident light, and the refractive indexes of
IP-dip (Nanoscribe GmbH) photoresist and air at 1550 nm
wavelength are 1.53 and 1.00, respectively. In order to ensure
that the height of each unit is consistent with the theoretical
value, a substrate with a height of 2 µm is prepared, whose
surface serves as the zero-reference plane. In order to improve
the surface flatness within the unit, both X and Y directions are
scanned once separately when filling each unit. Meanwhile,
certain compensation processing is added to the direct writ-
ing scanning path to ensure the accuracy of the direct writing
structure.

Figure 4 shows the schematic diagram of the DLW sys-
tem, which is composed of the femtosecond fiber laser (Menlo
Systems GmbH, C-Fiber 780) with 100 MHz repetition rate,
100 fs pulse width and 780 nm center wavelength. The
acousto-optical modulator (Gooch Housego, AOMO 3080–
122) is used to control the femtosecond fiber laser power
and a 60× oil lens (Nikon, NA 1.4) is used to focus the
femtosecond laser beam. A three-dimensional piezoelectric
displacement platform (Physik Instrumente, P-563.3 CD) and
a two-dimensional galvanometer scanner (Scanlab, Intelliscan
III 10) are used to scan the laser beam in a predetermined path
in the process of exposures.

Figure 4. The schematic diagram of the DLW system.

Figure 5. The schematic diagram of the workflow in DLW
lithography. (a) Photoresist on the glass slide. (b) Exposure with the
focused laser beam. (c) Exposure complete, the grating structure
embedded in the unexposed photoresist. (d) After dissolving the
unexposed photoresist, leaving a solid grating skeleton.

The schematic diagram of the workflow in DLW litho-
graphy as shown in figure 5. The exposure material IP-dip can
be directly dropped on the glass slide without spin coating and
baking. During the fabrication process, the laser power is set
to 30 mW and the laser is scanned line by line in the IP-dip
photoresist, which the scanning speed is set to 200 mm s−1

and the scanning resolution is set to 0.15 µm.When the fabric-
ation is completed, the glass slide is immersed in the developer
(Propylene Glycol Methyl Ether Acetate, PGMEA) for 35 min
to dissolve the unexposed photoresist, leaving a solid grating
skeleton.
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Figure 6. (a) and (b) show the structures of these two MVPGs using
a scanning electron microscope, respectively. The scale bar is
20 µm. (c) and (d) 3D profile image of two MVPGs using a profiler.
(e) and (f) height distribution curve of a certain part of MVPG in
one period.

Figures 6(a) and (b) show the structures of these two
MVPGs with different focal spot arrays under a scanning elec-
tron microscope (Carl Zeiss, GeminiSEM 300), respectively.
The surface of two MVPGs is smooth and the size of each
unit is uniform. Figures 6(c) and (d) show 3D profile image
of two MVPGs using a profiler (ZYGO, New View 7300).
Figures 6(e) and (f) show the one-dimensional height profile as
indicated by the black arrow in figures 6(c) and (d). The meas-
ured values are consistent with the theoretical design values,
and the fabrication error is within 3%.

4. Optical performance of MVPG

In order to observe the diffraction pattern of theMVPG, we set
up a test system, as shown in figure 7(a). The 1550 nm laser
is expanded through lenses L1 and L2, reaches the MVPG
sample surface after going through a small aperture with
100 µms diameter. The imaging system uses an objective lens
(O, Olympus, 20×) and a tube lens (TL, focal length 160 mm)
to magnify the focal spot array on the MVPG focal plane onto
the CCD sensor (Xenics, Bobcat-320, pixel size 20 µm ×
20 µm). Figures 7(b) and (c) show the diffraction pattern of
the MVPGwith 4 ∗ 4 and 5 ∗ 5 focal spot arrays. Next, we will
measure and calculate the diffraction efficiency of the MVPG.
Sincewe aremore concerned about the focusing ability of light

Figure 7. (a) Experimental system for measuring the spot array
produced by MVPG; (b) and (c) show the diffraction pattern of the
MVPG with 4 ∗ 4 and 5 ∗ 5 focal spot arrays measured by
experiment, respectively. (d) and (e) intensity distribution of spots
along X.

passing through the MVPG, we ignore the Fresnel reflection
loss and the absorption loss. The diffraction efficiency in the
paper is defined as the ratio of the focal spot energy to the
total transmitted energy, which is a concept of relative dif-
fraction efficiency. The measured diffraction efficiencies of
the twoMVPGs are 68.58% and 63.4%. The experimental dif-
fraction efficiency is lower than the simulation due to limited
fabrication accuracy andmeasurement errors. In addition, they
have a slight influence on the uniformity of the spot intensity,
which is another criterion for evaluatingMVPG. The uniform-
ity curve of the spot intensity is shown in figures 7(d) and (e),
and the uniformity is 96.34% and 95.17%, respectively. There-
fore, the uniformity of the spot intensity of the MVPG is close
to the simulation values.

5. Optical properties of DG

For comparison, we designed two DGs with 4 ∗ 4 and 5 ∗ 5
focal spot arrays within the same 120 µm × 120 µm area
using the method from Morrison et al [31], Zhou and Liu
[32] and Chen et al [33]. The grating phase distribution is
shown in figures 8(a) and (b). The DGs are also fabricated by
DLW. figures 8(c) and (d) show the structures of these two
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Figure 8. (a) and (b) show the phase distribution diagram of two
DGs. (c) and (d) show the structures of these two DGs using a
scanning electron microscope, respectively. The scale bar is 20 µm.
(e) and (f) show the diffraction pattern of the DG with 4 ∗ 4 and
5 ∗ 5 focal spot arrays measured by experiment, respectively.
(g) and (h) intensity distribution of spots along X.

DGs under a scanning electron microscope. Figures 8(e)–(h)
show the focal spot arrays and spot intensity uniformity curve
of DG. It is calculated that the diffraction efficiency is 29.55%
and 35.04%, and the spot uniformity is 74.66% and 71.02%,
respectively. The results demonstrate that the MVPG has bet-
ter optical performance.

6. Summary

In conclusion, we successfully fabricated two different
MVPGs and DGs by using DLW, all of which are 120 µm
× 120 µm in size, and can generate either 4 ∗ 4 or 5 ∗ 5 focal
spot arrays in the far field. By measuring the far-field intens-
ity distribution of the MVPG on the focal plane, it is shown
that the MVPG can realize the function of light splitting.
Table 2 lists the optical performance parameters ofMVPG and
DG obtained in the experiment. The results demonstrate the

Table 2. The optical performance parameters of MVPG and DG.

η Ψ

β DG MVPG DG MVPG

4 ∗ 4 29.55% 68.58% 74.66% 96.34%
5 ∗ 5 35.04% 63.4% 71.02% 95.17%

better optical performance of MVPG over DG and the capab-
ility of DLW in the three-dimensional DOEs fabrication. Fur-
thermore, our gratings can be manufactured in minutes and
cost only a few dollars. Compared with commercial gratings,
our gratings have advantages in manufacturing time and cost.
Therefore, the DLW-based maskless lithography provides the
possibility for many practical large-scale commercial applica-
tions, such as creating 3D spot arrays, multi beam laser parallel
processing, multi focus andmulti photonmicroscopic imaging
and other fields.
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