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Abstract: A quasi-phase-matched two-dimensional (2D) nonlinear photonic crystal (NPC) whose 
poling direction is perpendicular to the pump beam, is shown to generate frequency-
multipath hyperentanglement where six paths are included. 

1. Introduction
Compared with the ordinary quantum entanglement source, the hyperentanglement source is more versatile.
Hyperentangled photons can realize various kinds of quantum operations such as Bell-state analysis [1], quantum
dense coding and advanced quantum computation [2].
At the same time, it is admitted that NPC plays a mainly role in producing various quantum entanglement [3,4]. In
this work, we introduce a compact scheme to produce frequency-multipath hyperentanglement using only one
well-designed 2D NPC.

2. Frequency-Multipath Hyperentangled Photon Source Scheme
A frequency-multipath hyperentanglement source scheme based on a 2D NPC is designed as shown in Fig.1. The
core device of the scheme is a type-Ⅰ (e→o+o) phase-matched 5% MgO-doped LiNbO3 crystal working in room
temperature (25℃), whose second order susceptibility 𝜒𝜒(2) is modulated in x and y dimensions in an ordered
fashion.
The pump beam is incident on the surface of the NPC along the z-axis. The pump plane is constructed by the pump
wave vector 𝑘𝑘�⃑ 𝑝𝑝 and the unit vector parallel to the y-axis, where 𝑘𝑘�⃑ 𝑝𝑝 is perpendicular to the xOy plane. Signal and
idler are located above and below the pump plane, respectively. There are three couples (Path1&4, Path2&5 and
Path3&6) of optional paths for each newly-generated spontaneous parametric down-conversion (SPDC) photon
pair in total. Besides, all the six paths are designed to be evenly distributed around the vector 𝑘𝑘�⃑ 𝑝𝑝. Therefore, we set
𝜃𝜃𝑗𝑗 = (j − 1) ∗ π/3 (where j=1, 2, 3) as shown in Fig.1, and the angle named 𝜑𝜑 between 𝑘𝑘�⃑ 𝑠𝑠 and 𝑘𝑘�⃑ 𝑝𝑝 is equal to the
one between 𝑘𝑘�⃑ 𝑖𝑖 and 𝑘𝑘�⃑ 𝑝𝑝. Respectively, 𝑘𝑘�⃑ 𝑠𝑠 and 𝑘𝑘�⃑ 𝑖𝑖 are wave vector of signal and idler.

The frequency-multipath hyperentanglement can be expressed as the tensor product of two entangled states:
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Fig. 1. Frequency-multipath hyperentangled photon source scheme. 
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Here, the subscript S and I represent signal and idler respectively. According to the spatial distribution cross 
section in Fig.1, (𝜃𝜃𝑗𝑗)𝑙𝑙 (where l=S, I) means that the angle between radial vector 𝑟𝑟𝑝𝑝 and the pump plane equals 𝜃𝜃𝑗𝑗, 
 𝜔𝜔𝑚𝑚,𝑙𝑙 (where m=1, 2; l=S, I) means that the angular frequency of l equals 𝜔𝜔𝑚𝑚.  

 
3.  Design Details of the Nonlinear Photonic Crystal 

Fig.2 shows the Quasi-phase-matching (QPM) conditions (A and B) that each of the three couples of SPDC 
processes needs to satisfy. In other words, the NPC needs to compensate six SPDC processes at the same time. 
The wavelength of pump is set at λ𝑝𝑝 = 775nm, and we choose λS = 1530nm, λI = 1570.5nm. Additionally, we 
ensure that the mismatch along the z-axis is zero. Correspondingly, φ = 0.1862rad, |∆𝑘𝑘�⃑ 𝑗𝑗| = 4.4346 × 10−2μm−1 
(where j=1, 2, 3). 

 
Fig. 2. QPM conditions for frequency-multipath hyperentanglement generation 

The NPC displayed in Fig.3(a) is the design result. In Fig.3(a), the subfigure surrounded by dotted lines is a partial 
enlarged view of the NPC, where each blue circle with radius of 56.67μm is called a motif [5]. In the motif χ(2) =
+1, while 𝜒𝜒(2) = −1 in the rest area of the NPC. And the NPC’s Fourier transform is shown in Fig.3(b).  

Fig. 3. (a) Structure of the NPC. (b) Fourier transform of the NPC. 
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