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Optical frequency combs in integrated photonics have widespread applications in high-dimensional optical com-
puting, high-capacity communications, high-speed interconnects, and other paradigm-shifting technologies.
However, quantum frequency combs with high-dimensional quantum states are vulnerable to decoherence, par-
ticularly in the presence of perturbations such as sharp bends. Here we experimentally demonstrate the robust on-
chip topological transport of quantum frequency combs in valley photonic crystal waveguides. By measuring the
time correlations and joint spectral intensity of the quantum frequency combs, we show that both quantum
correlations and frequency entanglement remain robust against sharp bends, owing to the topological nature
of the quantum valley Hall effect. We also demonstrate that dissipative Kerr soliton combs with a bandwidth
of 20 THz maintain their spectral envelope and low-noise properties even in the presence of structure perturba-
tions. These topologically protected optical frequency combs offer robust, complex, highly controllable, and scal-
able light sources, promising significant advances in high-dimensional photonic information processing. ©2024

Chinese Laser Press

https://doi.org/10.1364/PRJ.538355

1. INTRODUCTION

Integrated optical frequency combs (OFCs) offer a vast number
of time and frequency modes, significantly expanding the di-
mensionality of photonic systems. Due to their distinctive fre-
quency signatures, OFCs have been extensively studied across
both classical and quantum domains, encompassing classical
dissipative Kerr soliton (DKS) combs and quantum frequency
combs (QFCs). Fully coherent DKS combs have wide applica-
tions in ultrafast ranging [1–4], optical communications [5],
optical spectroscopy [6,7], frequency synthesis [8,9], and op-
tical computing [10,11]. In addition, QFCs operating at the
single-photon level can generate high-dimensional quantum
states in the frequency domain, enhancing the complexity and
scalability of quantum information processing [12–14]. Recent
studies have shown that QFCs enable high-dimensional fre-
quency entanglement [15–18], energy-time entanglement
[19–23], and time-binmultiphoton entanglement [24], offering

promising applications in quantum communication [25] and
quantum computation [26]. It is well known that high-
dimensional quantum states are susceptible to decoherence in
the presence of sharp bends [27,28]. Therefore, a key challenge
in quantum information technology is to achieve robustness of
high-dimensional quantum states against sharp bends.

In parallel, topological photonics introduces new capabilities
for photonic devices, including unidirectional light transport,
along with immunity to structural defects [29–37]. Due to
the topological protection properties, topological photonics
is soon introduced into nonlinear optics and quantum optics,
inspiring many significant advances, including the topological
harmonic generation [38,39], topological nonlinear imaging
[40], topological single-photon and biphoton states [41–43],
topological quantum emitters [28], topological frequency
combs [44–47], topological quantum interference [48,49],
and even topological quantum logic gates [50]. However,
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the topological protection of high-dimensional quantum states
against sharp bends remains unexplored. Valley photonic crys-
tal (VPC) waveguides, which emulate the quantum valley Hall
(QVH) effect, exhibit promising characteristics such as broad
bandwidth, low transmission loss, and ultra-compact chip sizes
[51]. These features open exciting possibilities for achieving ro-
bust on-chip topological transport of high-dimensional quan-
tum states with large bandwidths.

Here we experimentally demonstrate the on-chip topologi-
cal transport of both QFCs and DKS combs in VPC
waveguides. Our VPC topological waveguide supports topo-
logically protected kink states with a significant topological
bandgap of approximately 25 THz, enabling the topological
transmission of OFCs with extremely wide frequency ranges.
Using a Si3N4 micro-resonator with a free spectral range (FSR)
of 100 GHz, we can access QFCs and DKS combs at different
pump powers. We measure the coincidence-to-accidental ratio
(CAR) and joint spectral intensity (JSI) (in a 5 × 5 mode
subspace) of QFCs, and find that the quantum correlations
and frequency entanglement are topologically protected.
Additionally, we demonstrate that fully coherent DKS combs,
including single-soliton states, multisoliton states, and soliton
crystals, maintain their spectral envelope and low-noise features
even after traveling through the topological interfaces. Our

findings show the potential for topologically protected unidi-
rectional transport of high-dimensional quantum states and
phase-locked soliton states, promising new approaches to
high-dimensional information processing utilizing topology
in classical and quantum optics.

2. RESULTS

A. Design of VPCs
Our topological device supporting the on-chip transport of
OFCs is illustrated in Fig. 1(a). The topological waveguides
are fabricated using a silicon-on-insulator (SOI) wafer with a
silicon layer thickness of 220 nm (see Section 4). The VPCs
are composed of a graphene-like lattice with a lattice constant
of a0 � 433 nm. Each unit cell comprises two triangular holes
with side lengths of d 1 and d 2. For unperturbed unit cells
(d 1 � d 2 � 216 nm), the C6 symmetry leads to a degenerated
Dirac point at the K and K 0 valleys. Breaking the inversion
symmetry (d 1 ≠ d 2) results in a complete bandgap in the
Brillouin zone (see Appendix B). It is noted that the eigenm-
odes at the K and K 0 valleys exhibit opposite polarization. The
valley Chern numbers of VPC1 (d 1 � 122 nm and d 2 �
295 nm) and VPC2 (d 1 � 295 nm and d 2 � 122 nm) are
calculated as Cv1 � −1∕2 and Cv2 � 1∕2, respectively (see

Fig. 1. (a) Scheme of VPC waveguides supporting on-chip topological transport of OFCs. (b) Edge dispersion of the VPCs, where the yellow
region denotes the operation bandwidth of the valley kink state. Right panel:Hz field distributions for the topological edge state. SEM images of the
(c) straight and (d) Z-shaped topological waveguides. (e) Measured transmission spectra of the straight (orange curve) and Z-shaped topological
waveguides (green curve).
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Appendix A). At the interface between VPC1 and VPC2, the
interchange of VPCs reverses the sign of the valley Chern num-
bers. Note that the difference between the valley indices at
the K point across the interface is ΔCK

edge1 � Cv2 − Cv1 > 0
[34,52], which determines the propagation direction of the
edge state around each valley.

Figure 1(b) shows the calculated edge dispersion of the
VPCs. There exists a pair of valley kink states (blue curves) with
a bandwidth of approximately 25 THz (highlighted in yellow),
spanning from 175 to 200 THz. Importantly, such a large
bandwidth allows the topological transport of OFCs with a
bandwidth of approximately 200 nm at telecommunication
wavelengths. The two valley kink states with opposite group
velocities are locked to different valleys, referred to as “valley-
locked” chirality [33,34]. The right panel of Fig. 1(b) displays
the field distribution for the valley kink state at kx � 0.68π∕a0,
showing strong localization of electric field around the
interface.

To verify robustness against sharp turns, we designed two
types of waveguides: straight and Z-shaped topological wave-
guides [see scanning electron microscopy (SEM) images in
Figs. 1(c) and 1(d)]. The in-and-out coupling of the topological
waveguides is achieved using lensed fibers, with an insertion
loss of 6 dB/face. As shown in Fig. 1(e), the measured trans-
mission spectrum of the Z-shaped waveguide closely matches
that of the straight waveguide, indicating that the valley kink

states are robust against sharp bends. It can clearly be seen that
the measured transmission spectra align well with the simula-
tion results (see Appendix B). Due to the cutoff excitation
wavelengths of the pump laser, we are only able to access
the topological bandgap from 1490 to 1640 nm.

B. Topological Transport of QFCs
Thanks to the large topological bandgap of the valley kink
states, we are able to achieve on-chip topological transport
of broadband QFCs with frequency entanglement. Our QFC
is generated using a Si3N4 micro-resonator with a high-quality
factor (Q-factor) of 1.68 × 106 (see Appendix C). To manipu-
late the broadband phase matching for spontaneous four-wave
mixing (FWM) processes, we carefully design the waveguide
cross-section to achieve weak anomalous group-velocity
dispersion [53].

Figure 2 shows the experimental setup for the topological
transport of OFCs, with the details provided in Section 4.
We pump the Si3N4 micro-resonator at below-threshold power
around 1550 nm. As a result of the spontaneous FWM process,
a two-photon high-dimensional frequency-entangled state, also
referred to as a biphoton frequency comb, is generated [14].
The QFCs with a high-dimensional quantum state could sig-
nificantly increase the capability of quantum information
processing [15,24]. Generally, the quantum state of the QFC
can be written as [15]

Fig. 2. (a) Experimental setup for topological transport of OFCs. To generate QFCs, the pump laser is actively tuned by a proportional-integral-
differential (PID) controller, while the auxiliary laser is not used. To generate DKSs, both lasers are utilized to pump the resonator. EDFA, erbium-
doped fiber amplifier; FPC, fiber polarization controller; CIRC, optical circulator; OPM, programable optical power meter; FBG, fiber Bragg
grating; OSA, optical spectrum analyzer; ESA, electrical spectrum analyzer; TBPF, tunable bandpass filter; SPD, single-photon detector.
(b) Experimental setup for the DKS spectrum measurements. (c) Experimental setup for time correlations and JSI measurements of QFCs.
(d) Experimental setup for RF beat notes of the single-soliton states and a CW reference laser.
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jΨi �
XN
k�1

αkjk, kisi, with
X

jαkj2 � 1, (1)

where jk, kisi is the signal and idler photons for the kth comb
line pair, k � 1, 2,…,N is the mode number, and the complex
element αk represents the amplitude and phase of the signal-
idler photon pair. The jk, kisi is given by

jk, kisi �
Z

dΩΦ�Ω − kΔω�jωp �Ω,ωp − Ωisi, (2)

in which Ω is the frequency deviation from the pump fre-
quency ωp, Δω is the FSR of the resonator, and Φ�Ω� is
the Lorentzian spectrum function. The quantum state jk, kisi
is a superposition of multiple frequency modes, symmetrically
distributed around the pump mode.

Figures 3(a)–3(c) show the measured single-photon spectra
at the outputs of the micro-resonator, straight, and Z-shaped
topological waveguides, respectively. We observe comb-like
spectra with a bandwidth of 80 nm and a mode spacing of ap-
proximately 0.8 nm. In our QFC, an individual signal or idler
photon forms a coherent superposition of 48 frequency modes,
signifying the realization of a quantum system with at least 48

dimensions. Notably, the spectra of the QFCs detected at the
output ports of the topological waveguides are nearly identical,
indicating that the QFC experiences no significant loss after
traversing sharp bends. This observation is consistent with
the transmission spectra of the topological waveguides shown
in Fig. 1(e).

To confirm the quantum correlation of our QFCs, we rec-
ord the relative arrival time between correlated photon pairs
(S7I 7) and uncorrelated photon pairs (S7I 8) as coincidences.
Any events involving uncorrelated photon pairs are considered
accidental counts, which include dark counts, background
counts, and uncorrelated photon counts [20]. We fit the three
coincidence peaks using the second-order Glauber correlation
function g si�Δt� ∝ exp�−Δt∕τ�, where τ represents the coher-
ence time of the correlated photons. The fitted coherence times
for the three QFCs are 2.90 ns, 2.69 ns, and 2.45 ns, respec-
tively, which align with the resonance linewidth (around
115 MHz). Due to the decoherence of quantum states at sharp
corners, the coherence time of the photon pairs is slightly re-
duced. After transmission through the Z-shaped waveguide, the
coherence time decreased by approximately 8.92% compared
to that in the straight waveguide. This small degradation

Fig. 3. (a)–(c) Measured single-photon spectra and (d)–(f ) signal-idler coincidence histograms of the QFCs at the outputs of the original micro-
resonator, straight, and Z-shaped topological waveguides, respectively. The pink, purple, and yellow marked regions denote the selected signal
modes, idler modes, and several modes eliminated by the FBG, respectively.
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indicates the topological protection of time correlation in
the QVH systems. In addition, we obtain CAR values of
9.7, 10.7, and 10.2 from the correlation peaks, respectively.
It is worth noting that high on-chip power (6 mW) increases
accidental counts, leading to low CAR values. Furthermore,
we demonstrate that our topological QFCs can function as
wavelength-multiplexed heralded signal-photon sources (see
Section 4).

Furthermore, to assess the spectral correlations across the
photon-pair spectrum, we measure the JSI distributions for
mode-by-mode photon counting, covering five sideband pairs
(S4−8I 4−8). The JSI, which demonstrates spectral correlations,
arises from energy and momentum conservation [54]. The re-
sults shown in Figs. 4(a)–4(c) clearly reveal the frequency cor-
relation of the signal-idler modes generated through the FWM
processes. Only photon pairs that satisfy the energy conserva-
tion relation (2ωp � ωs � ωi) exhibit strong frequency corre-
lation. We implement a correction for the three JSIs by
subtracting the accidental coincidence counts (induced by
dark counts, background noise, and after-pulse detection of
InGaAs SPDs).

We use Schmidt decomposition to evaluate the frequency
entanglement of QFCs [55] (see Appendix E). Figures 4(d)–
4(f ) show the distributions of normalized Schmidt coefficients
λn and entanglement entropy Sk for three QFCs, respectively.
The Schmit coefficients λn represent the possibility of obtaining
the nth quantum state, where nonzero Schmidt coefficients
(greater than one) indicate the frequency entanglement [55].
The Schmidt numbers K � �P

λ2n
�
−1 and entanglement

entropy Sk � −
P

λnlog2λn are used to demonstrate the pres-
ence of two-photon frequency entangled states, where a larger
K value indicates higher-quality entanglement [55]. We obtain
the entanglement entropy of 1.41, 1.16, and 1.07 for three
QFCs, respectively. Moreover, the Schmidt numbers K are cal-
culated as 1.89, 1.63, and 1.53, respectively, which proves
the existence of frequency entanglement. By comparing the
Schmidt numbers of QFCs at the outputs of straight and Z-
shaped topological waveguides, we demonstrate the robustness
of frequency entanglement in the presence of sharp bends.
Notably, using superconducting nanowire single-photon detec-
tors (SNSPDs) could significantly improve the Schmidt num-
bers. By filtering out the off-diagonal elements in the measured
JSI, we can achieve a Schmidt number greater than 4.0. Such a
significant Schmidt number indicates the presence of a quan-
tum state with effective dimensions of D � 4. Consequently,
this can lead to a topological high-dimensional quantum en-
tangled state, paving the way for intricate, large-scale quantum
simulations and computations.

Alternatively, one can evaluate the single-photon purity,
which is associated with the factorizability of two-photon
quantum states via Schmidt decomposition. Typically, single-
photon purity is quantified by Tri�ρ̂2s �, where ρ̂s�Tri�jΨihΨj�
denotes the density operator of the heralded single photon, and
Tri is the partial trace over the idler mode. Note that the her-
alded single-photon purity is given by Tri�ρ̂2s � � K −1 [54]. For
our QFCs, the single-photon purities are calculated to be 0.53,
0.61, and 0.65, respectively, indicating the emergence of high-
purity quantum states.

Fig. 4. Quantum properties of the QFCs detected at the outputs of the micro-resonator, straight, and Z-shaped topological waveguides.
(a)–(c) Measured JSI distributions. (d)–(f ) Distributions of normalized Schmidt coefficients λn and entanglement entropy Sk.
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C. Topological Transport of DKS Combs
We also perform on-chip topological transport of DKS combs
using the same Si3N4 micro-resonator. Before the experimental
scheme, we numerically simulate the dynamic evolution of
DKS combs described by the Lugiato–Lefever equation
(LLE) (see Appendix F). However, accessing stable DKS combs
in micro-resonators is challenging due to limitations imposed
by laser tuning precision, frequency stability, and short thermal
lifetime [53]. To address these challenges, we use a dual-pump
method to extend the region of soliton existence (see Section 4).
Also, the beat between the auxiliary and pump lasers could
facilitate the generation of soliton crystals [56].

By scanning the pump laser from the blue to the red side of
the resonator mode, one can clearly observe the comb evolution
processes, including Turing rolls, chaotic states (breathing sol-
iton states), multisoliton states, and single-soliton states [57].
Typically, a sharp decrease in intracavity power implies the
arrival of a bistable state (referred to as a soliton step), which
also demonstrates the arrival of a soliton state [53]. By stopping
the pump laser scan at soliton step regions, DKS states can be
easily accessed.

Figures 5(a)–5(c) show the measured optical spectra of the
single-soliton states at the outputs of the micro-resonator,
straight, and Z-shaped topological waveguides, respectively.
These spectra show the smooth sech2-shaped spectral envelope
with a bandwidth of about 20 THz. The single-soliton spec-
trum also exhibits a 3 dB bandwidth of 29.3 nm, corresponding
to a soliton pulse width of 87.5 fs. To further verify the noise
performance of the single-soliton states, we use a CW laser to
beat with one of the spectral lines of the combs. The resulting
beat notes exhibit distinct frequency lines with resolution
bandwidths (RBWs) of 100 kHz and signal-to-noise ratios
of 30 dB (see Appendix H), indicating excellent low-noise
characteristics.

Due to the inherently stochastic nature of intracavity dy-
namics, multisoliton states with a random soliton number
N can be accessed during the frequency-tuning process [53].
The measured spectra of the multisoliton states in three cases
are shown in Figs. 5(d)–5(f ), where the spectrum of a multi-
soliton state is caused by interference among several solitons. As
the number of solitons increases, the spectral characteristics be-
come progressively more complex [57]. In other words, the in-
tracavity solution for a multisoliton state can be described as the
sum of several distinct, independent soliton solutions located at
different positions. Interestingly, the adiabatic backward tuning
method can effectively reduce the soliton number, allowing the
transition from a multisoliton state to a single-soliton state [53].

We also access perfect soliton crystals using the forward
tuning method with relatively low pump powers (100 mW).
The formation of perfect soliton crystals results from the col-
lective self-organization of multiple copropagating solitons.
Figures 5(g)–5(i) show the measured spectra of perfect soliton
crystals in three cases. The combs exhibit several evenly distrib-
uted supermodes separated by 13 FSRs, leading to a mode spac-
ing of 1.24 THz. Additionally, our perfect soliton crystals can
be regarded as a single soliton with a larger FSR, which can be
used to generate ultra-high-repetition-rate DKS combs [58]. In
the time domain, 13 DKSs with constant pulse separations of
2π∕13 are present in the resonator, reaching the maximum al-
lowed number of solitons for the given pump. Since the comb
power is distributed across 13 supermodes, the power of each
supermode is amplified by a factor of 132, and the energy con-
version efficiency is increased 13-fold compared to that of the
single soliton state [57].

Benefiting from the large bandwidth of topological wave-
guides, we demonstrate the topological transport of DKS
combs over a spectrum of approximately 20 THz. Remarkably,
all DKS combs pass smoothly through sharp bends without
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Fig. 5. Measured optical spectra of DKS combs at the outputs of the original micro-resonator, straight, and Z-shaped topological waveguides.
(a)–(c) Single-soliton states. (d)–(f ) Multisoliton states. (g)–(i) Perfect soliton crystals.
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noticeable loss. Despite traveling through sharp turns, the
DKSs retain their specific spectral envelope and low-noise char-
acteristics, demonstrating the topological protection of soliton
properties.

3. CONCLUSION

We have experimentally demonstrated the on-chip topological
transport of QFCs and DKS combs at telecommunication
wavelengths. In our fabricated VPC structures, we observe
topologically protected kink states with a bandwidth of
25 THz. Using a Si3N4 micro-resonator, we access both
frequency-entangled QFCs and mode-locked DKS combs. We
show that the quantum correlations and frequency entangle-
ment of high-dimensional quantum states exhibit no significant
decoherence in the presence of structural perturbations, owing
to the topological protection of the QVH effect. Furthermore,
we demonstrate that mode-locked DKS combs retain their per-
fect spectral envelope and low-noise characteristics even after
passing through topological interfaces. Topologically protected
OFCs provide robust, complex, highly controllable, and scal-
able quantum resources, offering promising advances in quan-
tum communication and information processing.

4. METHODS

A. Device Fabrication
We fabricate the topological devices on an SOI wafer with a
220 nm thick top silicon layer and 3 μm thick buried silicon
layer. The edge coupler, silicon waveguide, and VPC structures
are etched to a depth of 220 nm. We then deposit 1 μm thick
SiO2 cladding using plasma-enhanced chemical vapor deposi-
tion (PECVD). The entire chip is deeply etched and diced into
multiple individual chips. The devices are fabricated using elec-
tron beam lithography (Vistec EBPG 5200+) and an induc-
tively coupled plasma etching process (SPTS DRIE-I). For
details on the fabrication process of the structures used in this
work, see Refs. [59,60].

B. Experimental Setup for QFC Generation
In this experimental setup, we use a compact CW laser (Pure
Photonics) with a wavelength of 1550.78 nm to pump the
Si3N4 micro-resonator, and an EDFA to amplify the pump.
Two cascaded bandpass filters are used to suppress the ampli-
fied spontaneous emission (ASE) noise generated by the EDFA.
The power effectively coupled into the resonator is 6 mW. A
temperature controller (TEC) is used to control the thermal
instability of the mirco-resonator. The output QFC is coupled
into topological waveguides after the polarization control. A
99:1 BS is connected to the output port, where 1% of the out-
put power is detected by a programmable OPM (Joinwit) to
monitor the pump power, allowing active control of the laser
wavelength using a PID algorithm. The use of PID control en-
sures a stable resonant state for long-time coincidence measure-
ment. The remaining 99% of the output power is filtered by an
FBG, and the remaining QFCs are split by a 50:50 BS. The
signal and idler modes are selected by two TBPFs (WL
Photonics) with a bandwidth of 0.11 nm, and detected by
two InGaAs SPDs (Aurea Technology).

For the JSI measurement, the SPDs are set to gated mode
with a 20 MHz repetition rate, 20% quantum efficiency, and
10 μs dead time. The signals are then sent to a time analyzer to
record coincidence events.

C. Experimental Setup for DKS Comb Generation
In this experimental setup, we use the dual-pump method to
generate DKS combs by a computer-controlled soliton gener-
ation system [61]. The pump laser is excited by the same CW
laser and amplified to 0.4 W by an EDFA. An additional
auxiliary laser of 1 W power is used to stabilize the intracavity
energy to extend the soliton steps. To reduce the crossed in-
teraction of the two pumps, they are changed to orthogonal
polarization modes by two independent FPCs. The two lasers
are injected into the bus waveguide in opposite directions, with
two circulators separating the input and residual pump light.
The output comb is split by a 99:1 BS, with 1% of the output
power detected by an OPM. The other 99% of the output
power is split by a 90:10 BS, where 10% of the remaining
power is sent to an OSA to measure the spectrum of the gen-
erated Kerr combs. After the polarization control, the remain-
ing 90% of the residual output is coupled into the topological
waveguides. The output of the topological waveguide is then
sent to another OSA to monitor its spectrum.

In the computer-controlled soliton generation system, the
auxiliary laser is tuned to the resonance wavelength to generate
primary FWM sidebands. Note that the frequency modes of
the pump laser and the FWM sidebands generated by the aux-
iliary laser are removed from the optical spectrum. The pump
laser is automatically tuned from the blue to the red side to
access the soliton states. The script assesses the intracavity state
by monitoring the measured output power in the frequency-
tuning process. Once the soliton state is accessed, the automa-
tion script gives the “stop” command for the pump laser (see
Appendix D). In this case, the soliton state will hold for sev-
eral hours.

D. Calculation of Heralded Efficiency for QFCs
We also calculate the heralded efficiency ηh, which is the prob-
ability of detecting an idler photon when the signal photon is
detected. In general, the heralded efficiency can be given by
ηh � cc∕csignalηdet [62], where cc and csignal are the coincidence
and signal count rates, respectively, and ηdet is the detection
efficiency of the SPD for the idler mode (20%). Based on
the obtained measurement, we derive a heralding efficiency
of ηh � 6% without considering the losses of the experimental
setup.

APPENDIX A: THEORY OF VPCS

For unperturbed unit cells exhibiting C6 lattice symmetry, de-
generate Dirac points occur at the K and K 0 valleys. The ef-
fective Hamiltonian in the vicinity of the K (K 0) point is
given by [34,63,64]:

HK ∕K 0 � τzvD�σxδkx � σyδky�, (A1)

where vD is the group velocity, σx and σy are the Pauli matrices,
and δ~k � ~k − ~kK ∕K 0 denotes the deviation of the wavevector.
With the distortion of the unit cell (d 1 ≠ d 2), the Hamiltonian
can be rewritten as
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HK ∕K 0 � τzvD�σxδkx � σyδky� � τzγσz , (A2)

where τz � 1 �−1� denotes the K (K 0) valley pseudospin, σx,y,z
denotes the Pauli matrices, vD is the group velocity, and γ is
the strength of the symmetry-breaking perturbation. The per-
turbation is given by γ1 ∝ �R Bεzds −

R
Aεzds� (VPC1) and

γ2 ∝ �RDεzds −
R
Cεzds� (VPC2), where

R
εzds is the integra-

tion of dielectric constant εz at the positions of A and B. In this
context, the VPCs are dA � 0.72a0 and dB � 0.28a0, conse-
quently leading to the inequality

R
Bεzds <

R
Aεzds.

Additionally, we can get jγ1j > jγ2j. It indicates that the modes
at the K and K 0 valleys exhibit opposite circular polarizations,
specifically, left-handed circular polarization (LCP) and right-
handed circular polarization (RCP). The valley Chern numbers
of VPCs can be given by [34,35]

CK ∕K 0 � 1

2π

Z
HBZ

ΩK ∕K 0 �δ~k�dS � �1∕2, (A3)

where Ω � ∇k × ~A�k� is the Berry curvature, ~A�k� is the Berry
connection, and this integration region contains half of the
Brillouin zone. Hence, the disparity in the valley Chern num-
bers of the system is computed as jCK ∕K 0 j � 1, confirming the
topological characteristics of VPCs.

APPENDIX B: TOPOLOGICAL EDGE STATES

Topologically protected edge states in VPCs, also known as
valley kink states [53], can be observed at the interfaces be-
tween VPC1 and VPC2. As shown by the red-dotted curve
in Fig. 6(a), due to C6 symmetry, a Dirac point appears at ap-
proximately λ � 1566 nm at the Brillouin zone corners (K and
K 0) where d 1 � d 2 � 216 nm. The inversion symmetry of the
VPC can be broken by changing side lengths of triangular holes
(d 1 � 122 nm and d 2 � 295 nm), which opens a bandgap as
illustrated by the black-dotted curve in Fig. 6(a). To confirm
the robustness of these edge states, we design a straight wave-
guide and a Z-shaped topological waveguide. The simulated
field profiles of the valley kink states at the frequency of
193 THz (around 1550 nm) are shown in Figs. 6(c) and 6(d).

The results reveal that valley kink states are highly centralized at
the interfaces, and show robustness against sharp corners. The
simulated transmission spectra of the straight interface and
Z-shaped interface are shown in Fig. 6(b), revealing a topologi-
cal bandgap from 1490 to 1640 nm. Such simulation results are
consistent with the experiment result [Fig. 1(e)]. Note that for
the edge states with wavelengths far away from the K point,
there may exist random Anderson-localized cavities caused by
coherent backscattering [65]. Since the potential cavities fall
outside the scope of our manuscript, we will not delve into
further discussion in this article.

APPENDIX C: MICRO-RESONATOR
CHARACTERIZATION

We utilize a Si3N4 micro-resonator to generate both QFCs and
DKS combs. Consequently, dispersion engineering becomes a
critical manipulation for producing predictive combs in the
micro-resonator. The waveguide cross-section is numerically
simulated using the COMSOL Multiphysics software. In this
context, we select a waveguide cross-section with W �
1.8 μm, H � 0.8 μm, and θ � 89°. A schematic of the wave-
guide structure is presented in the inset of Fig. 7(b). A bus
waveguide is used to couple the pump to the micro-resonator
with a gap of 0.45 μm.

To generate both QFCs and DKS combs, it is necessary to
design the micro-resonator with anomalous group-velocity
dispersion (GVD). By expanding the propagation phase
constant β in Taylor series, we can estimate the second term
β2 by

β2 �
1

c

�
2n

dn�ω�
dω

� ω
d2n�ω�
dω2

�
, (C1)

where n�ω� signifies the effective refractive index. Figure 7(b)
illustrates the simulated GVD curve for fundamental modes
with transverse-electric (TE) and transverse-magnetic (TM) po-
larizations. It suggests a near-zero anomalous GVD around the
wavelength of 1550 nm. Additionally, the corresponding mode
profiles of TE and TM modes are depicted in Fig. 7(c).
Following a meticulous design of the Si3N4 micro-resonator,
we entrust the LIGETEC to fabricate resonators with the
AN800 technology. A microscopy image of the Si3N4 micro-
ring is presented in Fig. 7(a).

To measure the transmission spectrum of the micro-
resonator, a tunable semiconductor laser (TSL, Santec) is swept
from 1510 to 1590 nm. The result is illustrated in Fig. 8(a),

Fig. 6. (a) Band diagram of the VPC slab with inversion symmetry
(red-dotted curves) compared with inversion symmetry breaking
(black-diamond curves), where Γ, K, and M denote the high-
symmetry points in the first Brillouin zone. (b) Simulated transmission
spectra of the straight interface (orange curve) and Z-shaped interface
(green curve). (c), (d) Simulated field profiles of the valley kink states at
the frequency of 193 THz (around 1550 nm) at different interfaces.

Fig. 7. (a) Microscopy image of the Si3N4 micro-ring with
W � 1.8 μm, H � 0.8 μm, θ � 89°, and gap width of 0.45 μm.
(b) Simulated GVD curves for TE and TM modes, where the inset
denotes a diagram of the waveguide cross-section. (c) Simulated mode
profiles of TE and TM modes.
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which leads to an FSR of 95.75 GHz. The Taylor expansion for
the cavity resonant mode ωμ is expressed by

ωμ � ω0 �
X∞
n�1

Dn
μn

n!
, (C2)

where μ �μ ∈ Z� denotes the mode indexing, and ω0 corre-
sponds to the pumped resonant mode. The expansion terms
(also referred to as the high-order dispersion) can be written
as Dn � dnωμ∕dμn at ω � ω0. Another term, so-called inte-
grated dispersion, is used to describe the resonator properties,
which is given by Dint�μ� � ωμ − �ω0 � μD1�. Figure 8(b)
shows dispersions of the micro-resonator extracted from the
measured transmission, indicating a value of the second-order
dispersion D2 � 5.95 × 106 rad∕s. The appearance of result-
ing OFCs (both classic and quantum) depends on the quality
factor (Q-factor) of micro-resonators. The total Q-factor is
given by 1∕Q � 1∕Q in � 1∕Qex, in which Q in and Qex are
the intrinsic quality factor and external quality factor, respec-
tively. Here we sweep a resonant dip with a narrower linewidth
at the pump wavelength. The Lorentzian fitting of the resonant
dip shown in Fig. 8(c) reveals Q in � 2.20 × 106 and Qex �
7.10 × 106. Hence, the total quality of the micro-resonator
is calculated to be Q � 1.68 × 106. And the loss can be
calculated as κ � 7.22 × 108 rad/s, κin � 5.51 × 108 rad/s,
and κex � 1.71 × 108 rad/s, respectively. Consequently, the
coupling efficiency is determined as η � κex∕�κex � κin� �
0.24. This value indicates that the Si3N4 micro-ring, featuring
a gap of 0.45 μm, corresponds to an under-coupling case [53].

APPENDIX D: PROTOTYPE OF OPTICAL
FREQUENCY COMBS

To downsize the generation system for QFCs and DKS combs,
we have advanced our previous prototype [61] to establish
compatibility for these applications. We focus on building a
standalone microcomb source integrating all the necessary
hardware into a 21.5 inch chassis to reduce possible off-board

destabilization during the operation processing. Figure 9 shows
our promoted microcomb generation prototype. Compared
with our previous system, in this iteration, we optimize the gen-
eration setup for producing DKS combs with the dual-pump
method, and QFCs with the single-pump excitation method.
A TEC with a feedback controller is packaged at the bottom
of Si3N4 chip; the precision of this temperature stabilization
subsystem is 2 mK. Besides, we improve the concentration and
stability of optical and electric circuit arrangement.

We write corresponding scripts for the prototype’s software
to produce DKS combs and QFCs. In the case of DKS gen-
eration, the auxiliary laser is controlled to reach a resonant
mode far away from the pump resonant wavelength automati-
cally. The pump laser is tuned from the blue to the red side, and
stops until the automation script discerns the soliton states ac-
cording to the intracavity power. In the case of QFC genera-
tion, the frequency correlation measurement needs a stable
resonant situation. To ensure this, we use a PID loop to actively
control the pump laser’s wavelength. In this script, once the
pump laser accesses the resonant dip, the PID loop activates
and stabilizes the output power.

APPENDIX E: THEORETICAL ANALYSIS OF
QUANTUM FREQUENCY COMBS

Here we theoretically discuss the generation of QFCs in our
Si3N4 resonators. The biphoton states are generated from a
spontaneous FWM process, satisfying 2ωp � ωs � ωi and

2~kp � ~ks � ~ki, where ωp,s,i and ~kp,s,i are the frequencies and
wavevectors of four photons. The nonlinear Hamiltonian of
the FWM process in the resonator can be given by

H non �
χ�3�

2L

Z
0

−L
dzE ���

p E ���
p E �−�

s E �−�
i � h:c:, (E1)

where L is the cavity length, and h.c. denotes Hermitian con-
jugate. The pump field takes the form of a classical wave [66]:

E ���
p �z, t� � Epei�kpz−ωpt�e−iΓPz , (E2)

where the term e−iΓPz represents the pump self-phase modula-
tion, Γ is the nonlinear parameter of Si3N4, and P is the intra-
cavity power. In addition, the quantized field of signal and idler
modes can be given by [66]

E �−�
s,i �z, t� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏωs,i

2ε0ns,icAeff

s ffiffiffiffiffiffiffiffiffiffiffiffi
γs,iΔω

p
2π

X
μ

Z
∞

−∞
dΩs,i

×
a†s,i�ωμs , μi �Ωs,i�
γs,i∕2 − iΩs,i

e−i�ks,i z−�ωμs , μi�Ωs,i�t�, (E3)

Fig. 8. (a) Measured transmission spectrum of the Si3N4 micro-
resonator. (b) Dispersions of the micro-resonator extracted from the
measured transmission. (c) Lorentzian fitting of the resonant dip.

Fig. 9. Prototype for generating both QFCs and DKS combs.
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where Δω is the FSR, Aeff is effective field cross-section area,
γs,i is the linewidth of the cavity, ωμs , μi is the μ-th central
frequency with ωμs , μi � ωp � μΔω, and Ωs,i denotes the
deviation from ωμs , μi . Therefore, the nonlinear Hamiltonian
can be given by

H non � ℏη
X
μs

X
μi

Z
∞

−∞
dΩs

Z
∞

−∞
dΩi

ffiffiffiffiffiffiffi
γsγi

p
F μs ,μi

�γs∕2 − iΩs��γi∕2 − iΩi�
× a†s �ωμs �Ωs�a†i �ωμi �Ωi�ei��μs�μi�Δω�Ωs�Ωi�t � h:c:

(E4)

Here, the constant term is

η � E2
P

16π2ϵ0cAeff

ffiffiffiffiffiffiffiffiffi
ωsωi

nsni

r
χ�3�Δω: (E5)

The interaction between signal and idler modes is

F μs , μi �
Z

0

−L
dzei�2kp−ks−ki−2ΓP�, (E6)

where we can define the phase-matching condition term
Δk � 2kp − ks − ki − 2ΓP. Applying the first-order perturba-
tion theory, the biphoton state can be calculated by

jΨi � 1

iℏ

Z
∞

−∞
dtH nonj0i: (E7)

In our resonators, the frequency deviation is much smaller
than the FSR, that is, |Ωs,ij ≪ Δωs,i, and the index numbers of
signal and idler modes are the same. Therefore we can get
μs � μi � μ and Ωs � −Ωi � Ω. Using these reasonable as-
sumptions, the biphoton state can be simplified as

jΨi � η
X
μ

Z
∞

−∞
dΩ

ffiffiffiffiffiffiffi
γsγi

p
eiΔkL

�γs∕2 − iΩ��γi∕2� iΩ�
× sinc�ΔkL�a†s �ωp − mΔω�Ω�a†i �ωp � mΔω −Ω�j0i:

(E8)

This equation describes the frequency correlation (as a result
of energy conservation 2ωp � ωs � ωi) of signal and idler
photons. Furthermore, the comb-like biphoton state can be
considered a discretized result of continuous frequency entan-
glement [55]. That is, the individual photon (a signal or idler
photon) is a result of a superposition of hundreds of frequency
modes, leading to a two-photon high-dimensional frequency-
entangled state [15]. Specifically, a signal (idler) photon gener-
ated from spontaneous FWM could be found in any signal
(idler) frequency modes jωp � Ωi (jωp − Ωi). And their emer-
gence at corresponding frequency modes is highly correlated.
These QFCs are also proved to be frequency-bin entangled
[16,17] and energy-time entangled [19].

Using Eq. (E8), we can assess the single-photon spectrum
and JSI of generated QFCs. Generally, the single-photon spec-
trum of signal frequency modes can be given by [67]

S�ωs� � hΨja†s �ωs�as�ωs�jΨi

� η2
X
μ

γsγisinc
2�iΔkL�

jγs∕2 − i�ωs − ωp � mΔω�j2

×
1

jγi∕2� i�ωs − ωp � mΔω�j2 : (E9)

This equation reveals that bandwidths of the single-photon
spectrum are highly related to the phase-matching condition. A
carefully designed dispersion may lead to a spectral bandwidth
of 250 THz, ranging from near-ultraviolet to mid-infrared
[68]. The generated frequency mode has a Lorentzian-like
shape with a full width at half-maximum (FWHM) offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
p

− 1
p

γ ≈ 0.64γ, where we consider γs � γ1 � γ. For
our resonator, we can calculate a peak FWHM of 74 MHz
for signal (idler) frequency mode, where the cavity linewidth
is γ � 115 MHz.

Besides, we theoretically predict the JSI of generated QFCs
by hΨja†s �ωs�a†i �ωi�as�ωi�ai�ωi�jΨi. Therefore, the JSI can be
given by

C JSI�μ� � η2
Z

∞

−∞
dΩ

γsγi
�γs∕2 − iΩ�2�γi∕2� iΩ�2 sinc

2�ΔkL�:

(E10)

Here, we can obtain these parameters from the transmission
spectrum shown in Fig. 8(a), and ignore the term 2ΓP. The
normalized JSI of our Si3N4 resonator is plotted in Fig. 10(a).
Here we consider signal-idler mode numbers from 4 to 40
(modes 1–3 are significantly eliminated by the FBG in the
experiment).

To verify the frequency correlation of our biphoton fre-
quency comb following the on-chip topological transport,
we employ a coincidence count system to assess the JSI of
QFCs. The entanglement exhibited by photon pairs can be
elucidated by the factorizability of the JSA [55]. The JSA
can be approximately obtained from the JSI by A�ωs,ωi� ≈ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j�A�ωs,ωi�j2
p

. We employ Schmidt decomposition to vali-
date the entanglement in the generated quantum frequency
combs. If the biphoton state can be decomposed into a func-
tion of ωs and ωi, it signifies the presence of high-dimensional
frequency entanglement. The JSA can be expressed as
follows [55]:

A�ωs,ωi� �
XN
n�1

ffiffiffiffiffi
λn

p
ψn�ωs�ϕn�ωi�, (E11)

Fig. 10. (a) Simulated JSI of QFCs for the Si3N4 resonator.
(b) Schmidt coefficients λn and (c) entropy of entanglement for the
QFC.
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where λn (N ∈ N) is denoted as the Schmidt coefficient, and
ψn and ϕn are orthonormal functions of ωs and ωi in the
Hilbert space. λn, ψn, and ϕn are connected by these equations.

Subsequently, Eq. (E11) can be restructured as

A �
XN
n�1

ffiffiffiffiffi
λn

p
ψnϕ

T
n : (E12)

With Eq. (E12), Schmit coefficients λn can be computed by
solving the eigenvalue equations. Notably, when the count of
non-zero Schmidt coefficients λn surpasses one, or when the
entanglement entropy Sk > 0, the biphoton states exhibit fre-
quency entanglement [55]. Moreover, the entropy of entangle-
ment Sk and the Schmidt number K serve as effective measures
for quantifying the entanglement:

Sk � −
XN
n�1

λnlog2λn, (E13)

K �
�XN

n�1

λn

�2

∕
XN
n�1

λ2n: (E14)

The entanglement of biphoton frequency combs is identi-
fied by Sk > 0 or K > 1; the large value of Sk and K leads to a
high quality of high-dimensional frequency entanglement. For
our Si3N4 resonator, the Schmidt number and entropy of en-
tanglement are calculated as K � 11.40 and Sk � 9, respec-
tively [Figs. 10(b) and 10(c)]. In the high-dimensional
spaces, the Schmidt number K is an effective metric for quan-
tifying the degree of entanglement between signal and idler
modes. Therefore, the effective dimensions (numbers of rel-
evant orthogonal modes) are larger than 11. However, the
Schmidt number calculated from experimental data is not large
enough because of the performance limitations of InGaAs
SPDs. Due to its high-dimensional entanglement, QFCs have
broad application prospects in quantum communication
[69–71] and quantum computing [72,73].

APPENDIX F: NUMERICAL SIMULATION OF DKS
COMBS

The LLE [74] describing the nonlinear evolution of the light
field in micro-resonators can be given by the nonlinear
Schrödinger equation (NSE)

∂
∂z

A�m� � α

2
A�m� � i

β2
2

∂2

∂T 2 A
�m� � ig0jA�m�j2A�m�, (F1)

where A�m� is the field envelope for the m-th roundtrip, and L is
length of the micro-resonator. The boundary condition can be
written as

A�m�1��0,T � �
ffiffiffiffi
Θ

p
Ai �

ffiffiffiffiffiffiffiffiffiffiffi
1 − Θ

p
exp�−iδ0�A�m��L,T �,

(F2)

where T represents the fast time variable that describes the
waveform, Ai is the pump field, and Θ and δ0 are the coupling
coefficient and detuning of the resonance frequency, respec-
tively. α, β2, and g0 are the roundtrip loss, second-order
dispersion term, and nonlinear coefficient, respectively.

Assuming that the light field changes very little after a
propagating distance of L, then ∂∕∂z can be replaced by a slope
with

∂
∂z

A�m��z,T �jz�0 �
A�m��L,T � − A�m��0,T �

L
: (F3)

The NSE gives how the light field changes when it travels a
distance of L. Then we assume the power coupling coefficient is
far smaller than one, that is, Θ ≪ 1, and the detuning is far
smaller than FSR, that is, δ0 ≪ 2π. We can rewrite
Eq. (F2) as

A�m�1��0,T � �
ffiffiffiffi
Θ

p
Ai �

�
1 −

Θ
2
− iδ0

�
A�m��L,T �: (F4)

To reduce the complexity of derivations, we replace the term m
with slow time variable tR . Therefore, we can obtain the
relation

∂
∂τ

A�τ,T � � A�m�1��0,T � − A�m��0,T �
tR

: (F5)

We can rewrite Eq. (F5) with a new symbolic expression:

tR
∂
∂τ

A � −

�
αL� Θ

2
� iδ0

�
A − iL

β2
2

∂2

∂T 2 A

� iLg0jAj2A�
ffiffiffiffi
Θ

p
Ai: (F6)

This is the first form of LLE. Consequently, we replace several
mathematical expressions to make the LLE more understand-
able. For example, the roundtrip time tR can be calculated from
the FSR of the resonator by tR � 1

FSR, and the intrinsic loss
and external loss can be expressed as κin � αL · FSR and
κex � Θ · FSR, respectively. The total loss κ � κin � κex
corresponds to the resonance linewidth. The normalized detun-
ing is

δ0 � β1L�ω0 − ωp� �
1

FSR
δω, (F7)

where δω is the detuning ω0 − ωp. The second-order dispersion
and fast time variable T are

D2 � −
L
2π

β2�2πf r�3, T � 1

2πf r
ϕ: (F8)

Therefore, we can get the second form of LLE:

∂
∂τ

A � −

�
κ

2
� iδω

�
A� i

D2

2

∂2

∂ϕ2 A

� iLf rγjAj2A�
ffiffiffiffiffiffiffiffiffiffiffi
f rκex

p
Ai, (F9)

where τ is the slow time variable, and f r is the FSR of the
resonator. By using Eq. (F9), we can numerically simulate
the nonlinear dynamic evolution of the Kerr solitons in our
Si3N4 resonator. In our simulation, the pump power is set
as 0.4 W, the FSR of the resonator is 95.75 GHz, the nonlinear
index is 2.5 × 10−19 m2 W−1, the second-order dispersion is
D2 � 5.95 × 106 rad∕s, and the Q-factor is 1.68 × 106. We
set a simulated effective field cross-section area at the pump
wavelength by Aeff � 2.1 × 10−14 m2, and therefore the non-
linear coefficient can be given by g0 � ω0n2∕cAeff.

The simulated intracavity energy and the corresponding spa-
tiotemporal evolution of DKS combs as a function of the de-
tuning are depicted in Figs. 11(a) and 11(b). We can clearly see
several states, including stable modulation instability (SMI),
chaotic modulation instability (CMI), breathing, and soliton
states. The solitons always exist at the red-detuned side of
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the resonance frequency, where the intracavity field is
bistable. The simulated optical frequency combs are shown
in Figs. 11(c)–11(e), which reveal the existence of a single-
soliton state.

APPENDIX G: THEORETICAL ANALYSIS OF
TOPOLOGICAL TRANSPORT OF SOLITONS

In this section, we study the evolution of soliton combs in
VPC waveguides with certain dispersion. According to
Eq. (F9), the temporal profile of the soliton can be written
as A�t� � A0sech� t

T 0
�, where A0 and T 0 are the amplitude

and pulse width of the soliton pulse. The evolution of solitons
in photonic crystal waveguides is also governed by the NSE,
which takes the form of [75]

i
∂A
∂z

� 1

vg

∂A
∂t

� β2
2

∂2A
∂t2

− ig0jAj2A � 0, (G1)

where vg � dω∕dk and β2 are the group velocity and GVD,
and g0 is the nonlinear coefficient. By taking the derivative of
edge dispersion of topological edge states [Fig. 1(b)], we can
calculate the corresponding group velocity and GVD, as shown
in Fig. 12(a). The dispersion of valley kink states is almost lin-
ear in the bandgap [34], so the GVD is relatively small.

Given the relatively low power of the single soliton (around
1 mW) and the short length of the photonic crystal waveguide
(both the straight and Z-shaped topological waveguides are
28 μm), the nonlinear effect on soliton transmission is not in-
cluded in this simulation. By solving Eq. (G1) with the split-
step Fourier method, we can obtain the evolution of the soliton
temporal profile along the propagation distance z. As shown in
Fig. 12(b), the single-soliton envelope maintains a well-pre-
served shape during transmission, demonstrating the topologi-
cal protection characteristic.

APPENDIX H: RF BEAT NOTES OF THE SINGLE-
SOLITON COMB

To further characterize the performance of the single-soliton
comb, a reference CW laser (TSL) is employed to generate
a single-wavelength laser with a typical linewidth of 60 kHz.
The output combs are heterodyned with a CW laser and then
directed to a photodetector. The resulting electrical spectrum
was measured with an electrical spectrum analyzer, as shown in
Fig. 13. The RBWs are around 100 kHz. The signal-to-noise
ratio was approximately 30 dB, indicating the presence of a
narrow pulse width in this configuration of the single-soliton
comb.
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