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This study investigates the implementation of measurement-device-independent multiparty quantum commu-
nication using continuous-variable Greenberger-Horne-Zeilinger (CV GHZ) states under the fast fading channel.
The communication parties are connected through free space, and factors such as atmospheric turbulence cause
beam drift, resulting in variations in channel transmittance according to specific probability distributions. We
assume a worst-case scenario in which an eavesdropper has complete control over the channel, forcing the
communicators to estimate the channel based on this probability distribution. The protocol employs CV GHZ
states to achieve secure communication through quantum cryptographic conference and quantum secret sharing.
For the aspect of security, independent entangling cloner attack and coherent attack are analyzed. Simulation
results demonstrate that the protocol can withstand advantageous attacks from eavesdroppers.
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I. INTRODUCTION

Quantum communication [1] is first proposed to ensure
the absolute security of transmitted information based on
the quantum properties of microscopic particles. Quantum
communication is divided into two branches based on the
encoding scheme: continuous quantum information [2] and
discrete quantum information techniques [3]. On the other
hand, quantum information can be classified to quantum key
distribution [4] and multipartite quantum communication [5]
based on the number of users participating in the communi-
cation. The latter involves quantum secret sharing (QSS) [6]
and quantum cryptography conference (QCC) [7]. Every legal
participant gets the identical and complete message in QCC
while all users can recover the full message together in QSS.

It is worth noting that quantum communication can guaran-
tee the security of communication in principle, but the actual
communication environment will have an impact on the se-
curity of communication. The attacks on detection device are
huge threat to quantum communications. Fortunately, physi-
cists have developed the measurement-device-independent
(MDI) [8–10] method to defend the attacks on the detection
devices where the signals are detected by the untrusted third
party [11]. In this approach, all communicators connect to an
untrusted party, eliminating detector side channels, represent-
ing a significant advancement bridging the gap between QKD
theory and practice.

Research has explored multiparty continuous-variable
quantum communication, utilizing Greenberger-Horne-
Zeilinger (GHZ) states for information sharing [12]. GHZ
states have been realized in several optical experiments,
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demonstrating the feasibility of theoretical quantum
communication through multipartite entanglement [13,14].
However, on the other hand, in realistic implementations, one
should also consider the possibility of temporal variations
of the communication line between two remote users as
modeled by the so-called fading channel. Fast-fading channel
describes connections between communicators through
free space, where adverse propagation conditions, such as
atmospheric turbulence [15,16], cause fluctuations in phase
and amplitude. Consequently, the channel’s projection rate
varies according to mathematical probabilities, leading to data
corruption. In such complex environments, the rapid signal
changes significantly degrade communication performance
[17]. In this case, the transmissivity of the link between the
two parties is not constant and may take values according to
some probability distribution.

To achieve quantum encrypted communication in challeng-
ing real-world environments, this paper presents a continuous-
variable measurement-device-independent (CV MDI) multi-
party quantum communication system via fast-fading channel.
It extends the implementation of CV MDI multipartite quan-
tum communication, based on GHZ states with uniformly
reduced channel loss, to free-space links affected by at-
mospheric turbulence, making it more suitable for practical
applications. It employs two types of protocols: QCC and
QSS, addressing both individual and collaborative decryption
scenarios to ensure communication security. In a nutshell, the
continuous variable GHZ states, which can be used to imple-
ment QCC and QSS, are generated by MDI technique. Then
the proposed continuous-variable MDI multiparty quantum
communication via fast-fading channel can defend the attacks
on detection devices. Moreover, in the proposed protocol, it
is assumed that the eavesdropper has full control of the fast-
fading process. Under this circumstance, the eavesdropper
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can choose the instantaneous transmissivity of the channel
while the legal participants can only detect the mean statistical
process. The performance of the continuous-variable MDI
multiparty quantum communication protocols in the worst-
case scenario are studied. It is also enhanced from a utility
point of view, demonstrating that the protocol is still well
available in harsh environments, contributing to the real-world
implementation of quantum communication.

The organization of this paper is as follows. In Sec. II,
we provide a detailed explanation of how to utilize CV GHZ
states to implement multiparty quantum communication pro-
tocols, highlighting both the prepare-and-measure (PM) and
entanglement-based (EB) schemes. In Sec. III, we examine
the implementation of multiparty quantum communication
via fast-fading channel and provide a brief overview of the
postselection (PS) scheme. In Sec. IV, we analyze how QCC
and QSS protocols withstand independent entangling cloner
and coherent attacks. Section V presents simulations and per-
formance analyses of the QCC and QSS protocols, testing
their performance based on actual parameters. Finally, the
conclusion is drawn in Sec. VI.

II. CONTINUOUS-VARIABLE
GREENBERGER-HORNE-ZEILINGER STATES

This section will detail the implementation of QCC and
QSS schemes using CV GHZ states. CV GHZ states are quan-
tum states formed by the entanglement of multiple modes,
typically three or more. These states resemble the originally
proposed discrete-variable GHZ states and are described in
continuous-variable systems by the orthogonal components of
the light field, such as phase and amplitude.

The QCC scheme [7,18] is designed for a group of users
who need to conduct a secure conference. In this scenario,
each member must be able to decrypt any encrypted public
information broadcasted by other members, while ensuring
that external parties cannot access this information. Although
a straightforward approach would involve assigning a separate
key for each pair of users through simple two-user encryption,
this method is inefficient. A more effective solution is for
users within the group to share particles, with measurement
results used to establish a common key known to all group
members.

Conversely, the QSS scheme [6,19,20] is applicable in
situations where the entire group must collaborate to decrypt
a message. This is achieved by using GHZ states to divide the
published quantum information into multiple parts, each of
which does not contain the original information. Only by com-
bining these parts can the original information be restored.
This approach significantly simplifies the complexity associ-
ated with information splitting required for secret sharing in
classical key systems.

CV GHZ states have been realized and confirmed in vari-
ous optical experiments [13,14]. Here, we demonstrate how to
implement the PM scheme [21] and EB scheme [22] for QCC
and QSS using CV GHZ states. The three parties involved in
the communication (Alice, Bob, and Charlie) are connected to
an untrusted party, David, to eliminate potential attacks from
the detector side. The security of the communication relies on

FIG. 1. PM scheme of the multipartite measurement-device-
independent quantum communication. The measurement is com-
pleted by the relay.

David’s operations and measurement data. We first present the
PM scheme illustrated in Fig. 1.

PM scheme.
Step 1: Alice, Bob, and Charlie generate random numbers

using their respective signal sources and then apply Gaussian
modulation to the squeezed states. In the QCC scheme, the
position of the squeezed vacuum state is modulated, with XA,
XB, and XC obeying Gaussian distribution. In the QSS scheme,
the momentum of the squeezed vacuum state is modulated,
yielding an average momentum that follows a Gaussian distri-
bution represented by random numbers PA, PB, and PC .

Step 2: These three parties involved in the communication
send the modulation results to the untrusted party, David.
David then mixes the various states using two beam splitters
he has prepared and detects the output results with three
homodyne detectors. He subsequently broadcasts the mea-
surement results to Alice, Bob, and Charlie.

Step 3: Alice, Bob, and Charlie need to perform data post-
processing [23] to further analyze and manipulate the acquired
data. In the QCC scheme, Bob modifies XB using X ′

B = XB +√
2XD, while Charlie modifies XC with X ′

C = XC + (
√

1
2 XD −√

3
2 XE ), leaving Alice unchanged. This results in the construc-

tion of a GHZ state that satisfies the relationships XA − X ′
B →

0 and X ′
B − X ′

C → 0. In the QSS scheme, Charlie changes PC

to P′
C = PC + √

3PF , while Alice and Bob remain unchanged,
thereby satisfying PA + PB + P′

C → 0 [12].
Step 4: Finally, these participants can implement QCC or

QSS with these data they kept.
The PM scheme is normally used to guide experiment. For

the sake of analyzing the security of the proposed schemes,
the equivalent EB scheme is also proposed. The specific steps
of the EB scheme are illustrated in Fig. 2.
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FIG. 2. EB scheme of the multipartite measurement-device-
independent quantum communication. The legitimate users displace
their own states based on the measurement result announced by the
relay. The GHZ states shared by the users can be used to share keys.

EB scheme.
Step 1: Alice, Bob, and Charlie each prepare an EPR pair,

keeping one mode for themselves while sending the other
mode to the untrusted party, David.

Step 2: David prepared two specific beam splitters. First, he
used a 1:1 beam splitter to combine the modes sent by Alice
and Bob. One of the two new output modes was measured us-
ing a homodyne detector and obtained the position quadrature
X̂D, while the other was sent to a 1:2 beam splitter. This second
mode was mixed with the mode from Charlie and then the
position quadrature X̂E and momentum quadrature P̂F were
measured by two homodyne detectors. Subsequently, David
broadcasted these measurement results XD, XE , and PF [24].

Step 3: These participants proceed these data with post-
processing operation. Bob modifies the position quadrature
with X̂B1 = √

2XD after receiving XD, while Charlie modi-

fies the position quadrature by X̂C1 = (
√

1
2 XD −

√
3
2 XE ) and

momentum quadrature by P̂C1 = √
3PF . Then, the modes A1,

B3, and C3 held by them form a set of GHZ states. In the
QCC scheme, they satisfy the conditions X̂A1 − X̂B3 → 0 and
X̂B3 − X̂C3 → 0. the condition P̂A1 + P̂B3 + P̂C3 → 0 can be
used to implement QSS [12].

Step 4: At least two of the three parties in the communica-
tion must disclose their private results to recover the secret.

III. PROTOCOLS OF MULTIPARTITE QUANTUM
COMMUNICATION via FAST-FADING CHANNEL

The protocol via fast-fading channel is illustrated in Fig. 3.
Alice, Bob, and Charlie send their states to David through this
channel, forming the CV GHZ state described in the previous
section, and then engage in encrypted communication using

QCC or QSS. In real-world scenarios, strong atmospheric
turbulence leads to rapid fluctuations in channel transmit-
tance, causing effects such as beam spreading, absorption,
and scattering [25]. Consequently, their transmitted signals
experience significant interference, resulting in a decreased
secure key rate and potential communication disruption un-
der sufficiently strong interference. This paper discusses the
worst-case scenario, utilizing the most pessimistic estimated
transmittance, ηmin

A(B,C), for the channels of Alice, Bob, and
Charlie. This is achieved through a postselection (PS) scheme.

The complexity of fast-fading channel influenced by at-
mospheric conditions is significant. In our analysis, we often
consider the postselection (PS) scheme [26]. Typically, the
volatility of atmospheric channels falls within the kilohertz
range, while modulation and detection rates are usually in the
megahertz range. This disparity allows for the transmission of
thousands of signals or detection states during the stable time
of atmospheric channel attenuation, with each measurement
reflecting a relatively stable transmittance. We categorize the
channel into multiple subchannels, where the collective state
of these subchannels represents a mixture of their individual
states, described by the overall channel’s probability trans-
mittance. By selecting subchannels with lower attenuation,
we can achieve higher key rates or stronger entanglement. In
practical experiments, operations are conducted based on this
categorization. The estimated channel transmittance by the
communicators is faster than the fluctuations of the channel,
enabling them to assess the actual transmission conditions
(Pη ). The PS scheme has been shown to ensure the security
of Gaussian protocols and the recovery of entangled states.
In our approach, communicators perform postselection by
choosing a subset of the actual transmittance distribution {ηi}
for subsequent statistical analysis and key rate calculations.
We consider the worst-case scenario to be the most pessimistic
selection within the chosen subset.

The diagram on the right side of Fig. 3 illustrates the
transmission probability of the subchannel PS principle. The
green shaded area represents the cumulative interval of re-
liable transmittance within the subchannel. To increase the
overall success probability, this interval must be expanded by
shifting ηmin downward, thereby allowing more data contribu-
tions from the subchannels to enhance security.

IV. SECURITY ANALYSIS

Since the safety levels of the PM and EB schemes are
equivalent, but the EB scheme offers greater robustness in
complex scenarios, we focus on analyzing the EB scheme.
We will address two aspects: independent entangling cloner
attack and coherent attack [27].

A. Independent entangling cloner attack

In this section, we focus on the independent entangling
cloner attacks on each channel, as illustrated in Fig. 4.

Before the attack, Eve prepares three EPR pairs. Using
beam splitters with transmittances ηA(B,C), Eve injects one
mode of each EPR pair into a fast-fading channel. The output
after the attack, denoted as ÊA1(B1,C1), and the other mode of
the EPR pair, denoted as ÊA2(B2,C2), are stored in a quantum
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FIG. 3. Scheme of the continuous-variable measurement-device-independent multipartite quantum communication via fast-fading channel.

memory (QM). The initial state ρA,EA,B,EB,C,EC consists of six
independent tensor products of TMSS, forming a covariance
matrix, which can be expressed as

VA,EA,B,EB,C,EC =
3⊕

k=1

V , (1)

FIG. 4. EB Scheme for independent entangling cloner attack via
fast-fading channel.

where

V =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

V I
√

V 2 − 1Z 0 0√
V 2 − 1Z V I 0 0

0 0 VE I
√

V 2
E − 1Z

0 0
√

V 2
E − 1Z VE I

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(2)

V (V � 1) represents the variance of Alice’s (Bob’s, Charlie’s)
two-mode squeezed state (TMSS) [28], VE (VE � 1) repre-
sents the variance of Eve’s TMSS, I is the identity matrix, 0 is
the zero matrix, and Z is the Pauli Z matrix. In each channel,
the communicators (Alice, Bob, or Charlie) transmit patterns
through beam splitters with transmittance ηA(B,C). Eve injects
an attack into this process, denoted as

UEve = BSA ⊕ BSB ⊕ BSC, (3)

where

BSA(B,C) =

⎛⎜⎜⎜⎜⎝
I 0 0 0

0
√

ηA(B,C)I
√

1 − ηA(B,C)I 0

0 −√
1 − ηA(B,C)I

√
ηA(B,C)I 0

0 0 0 I

⎞⎟⎟⎟⎟⎠.

(4)
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In this study, we examine the worst-case scenario where the
eavesdropper, Eve, has complete control over the transmission
channel. This means that Eve can manipulate the instan-
taneous transmittance. Consequently, honest communicators
can only obtain the probability distribution of channel fading
at the end of the communication. To extract the key, honest
users assume the minimum transmittance, denoted as ηmin,
based on this distribution [29]. At this point, Eq. (4) becomes

BS′
A(B,C) =

⎛⎜⎜⎜⎜⎜⎜⎝

I 0 0 0

0
√

ηmin
A(B,C)I

√
1 − ηmin

A(B,C)I 0

0 −
√

1 − ηmin
A(B,C)I

√
ηmin

A(B,C)I 0

0 0 0 I

⎞⎟⎟⎟⎟⎟⎟⎠.

(5)

The transmittance rate ηA(B,C) is not a constant and must
be estimated probabilistically. In the most random scenarios,
the transmittance rate is uniformly distributed between two
extremes, ηmin

A(B,C) and ηmax
A(B,C), and they satisfy

ηmax
A(B,C) = ηmin

A(B,C) + �ηA(B,C). (6)

After receiving the hybrid mode, which has been contami-
nated by attackers, David mixed these three received modes
using two splitters [30]

UDavid = BS2BS1, (7)

where

BS1 =
⎛⎝ W1 W2 0

−W2 W1 0
0 0 I

⎞⎠, BS2 =
⎛⎝ W3 0 W4

0 I 0
−W4 0 W3

⎞⎠,

W1 =

⎛⎜⎜⎝
I 0 0 0
0 1√

2
I 0 0

0 0 I 0
0 0 0 I

⎞⎟⎟⎠, W2 =

⎛⎜⎜⎝
0 0 0 0
0 1√

2
I 0 0

0 0 0 0
0 0 0 0

⎞⎟⎟⎠,

W3 =

⎛⎜⎜⎜⎝
I 0 0 0

0
√

2
3 I 0 0

0 0 I 0
0 0 0 I

⎞⎟⎟⎟⎠, W4 =

⎛⎜⎜⎝
0 0 0 0
0 1√

3
I 0 0

0 0 0 0
0 0 0 0

⎞⎟⎟⎠.

(8)

Prior to homodyne measurement, the entire state
ρA1,F,EA1,EA2,B1,D,EB1,EB2,C1,E ,EC1,EC2 evolves with its covariance
matrix. It is

VA1,F,EA1,EA2,B1,D,EB1,EB2,C1,E ,EC1,EC2

= UDavidUEveVA,EA,B,EB,C,ECU T
EveU

T
David. (9)

Next, rewrite the covariance matrix in the order of
A1, B1,C1, Eve, D, E , F , is

VA1,B1,C1,Eve,D,E ,F =
(

VA1,B1,C1,Eve,D,E C

CT VF

)
. (10)

In this context, C denotes the covariance submatrix, and
Eve encompasses all patterns related to Eve, including

EA1, EA2, EB1, EB2, EC1, and EC2. Simplify the covariance ma-
trix VA1,B1,C1,Eve,D,E using homodyne measurement P̂F

VA1,B1,C1,Eve,D,E = VA1,B1,C1,Eve,D,E |PF + C

(
0 0
0 1

V (P̂F )

)
CT .

(11)

The variance of P̂F , denoted as V (P̂F ), is provided in the
matrix VF [31].

After iteratively computing the covariance matrix of the
state following partial Gauss measurements [32,33], it is ev-
ident from Eq. (11) that this process is independent of the
measurement outcomes, and the covariance matrix remains
constant. Because the displacement operation maintains the
variance and covariance of X̂ and P̂ unchanged while only
altering their means, partial state ρA1,B3,C3 have the same
covariance matrix as ρA1,B1,C1|XD,XE ,PF [12]. Therefore, we
can obtain the state ρA1,B3,C3,Eve in the covariance matrix
VA1,B3,C3,Eve. The key rate is calculated as the difference
between the mutual information of the communicating par-
ties and Eve’s mutual information. Under this circumstance,
we have

K (ηA(B,C) ) = IAB(AC,BC) − IE . (12)

where IAB(AC,BC) are the mutual information between Alice,
Bob, and Charlie, respectively, and IE is the valid information
stolen by eavesdropper Eve.

Via fast-fading channel, communication parties rely on the
PS scheme to estimate the channel conditions. We consider
the worst-case scenario where Eve has complete control over
the transmission channel, allowing her to arbitrarily spec-
ify the instantaneous pass rate for each transmission. The
transmittance rate fluctuates randomly within a range in the
communicator’s perception. We select the optimal estimated
boundary ηmin to estimate the eavesdropper’s average mutual
information ĨE , the key rate becomes

Kfast = βIηmin
AB(AC,BC) − ĨE , (13)

where correction efficiency coefficient β ∈ [0, 1] [34].
Alice, Bob, and Charlie only know that the minimum trans-

mittance, ηmin, follows a specific distribution Pη. We consider
a scenario where only one user is in a fast-fading channel.
When they estimate using the worst-case scenario, denoted as
Iηmin
AB(AC,BC) := IAB(AC,BC)(ηmin

A(B,C) ), the eavesdropper’s accessible
information is determined by the average Holevo quantity
[35], is

ĨE =
∫

dηPηχ (E : γ ). (14)

Under the circumstance, Eq. (13) becomes

Kfast = βIAB(AC,BC)
(
ηmin

A(B,C)

) − 1

�η

∫ ηmax
A(B,C)

ηmin
A(B,C)

dηχ (E : γ ). (15)

χ (E : γ ) represents the mutual information of Eve.
In the QCC scheme, let us assume that Alice intends to

share the secret key with Bob and Charlie, key rate is

KQCC = min{KAB, KAC}. (16)
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The reverse reconciliation [36] key rates are given by

KRR
AB = βI

(
XA1 : XB3

) − 1

�η

∫ ηmax

ηmin

dηI
(
XA1 : XEA1 , XEA2

)
,

(17)

KRR
AC = βI

(
XA1 : XC3

) − 1

�η

∫ ηmax

ηmin

dηI
(
XA1 : XEA1 , XEA2

)
.

(18)

The direct reconciliation key rates are given by

KDR
AB = βI

(
XA1 : XB3

) − 1

�η

∫ ηmax

ηmin

dηI
(
XB3 : XEB1 , XEB2

)
,

(19)

KDR
AC = βI

(
XA1 : XC3

) − 1

�η

∫ ηmax

ηmin

dηI
(
XC3 : XEC1 , XEC2

)
,

(20)

where

I
(
XA1 : XB3(C3 )

) = 1

2
log2

V
(
X̂B3(C3 )

)
V

(
X̂B3(C3 )

∣∣XA1

) , (21)

and

I
(
XA1(B3,C3 ) : XEA1(B1,C1) , XEA2(B2,C2)

)
= 1

2
log2

V
(
X̂A1(B1,C1)

)
V

(
X̂A1(B1,C1)

∣∣XEA1(B1,C1) , XEA2(B2,C2)

) . (22)

The condition variance of X̂B3(C3 ) after homodyne de-
tection X̂A1 is represented by V (X̂B3(C3 )|XA1 ) and can be
obtained from the covariance matrix VB3C3|XA1

[12]. Af-
ter homodyne detection for X̂EA1(B1,C1) and X̂EA2(B2,C2) , the
variance of X̂A1(B1,C1) can be obtained from a simpli-
fied covariance matrix VA1(B3,C3 )|XEA1(B1,C1) ,XEA2(B2,C2)

, recorded as

V (X̂A1(B1,C1)|XEA1(B1,C1) , XEA2(B2,C2) ).
For the QSS scheme, we assume that Charlie holds the key,

and the reverse reconciliation key rates are defined as

KRR
QSS = βI

(
PA1 , PB3 : PC3

) − 1

�η

∫ ηmax

ηmin

dηI
(
PC3 : PEC1 , PEC2

)
,

(23)

the direct reconciliation key rates are defined as

KDR
QSS = βI

(
PA1 , PB3 : PC3

) − 1

�η

∫ ηmax

ηmin

dη
[
I
(
PA1 : PEA1 , PEA2

)
+ I

(
PB3 : PEB1 , PEB2

)]
. (24)

For Eq. (23), we obtain mutual information from the co-
variance matrix, as

I
(
PA1 , PB3 : PC3

) = 1

2
log2

V
(
P̂C3

)
V

(
P̂C3

∣∣PA1 , PB3

) , (25)

and

I (PC3 : PEC1 , PEC2 ) = 1

2
log2

V
(
P̂C3

)
V

(
P̂C3

∣∣PEC1 , PEC2

) . (26)

In Eq. (24), the maximum mutual information between Eve’s
measurement data and those of Alice and Bob is

I
(
PA1 : PEA1 , PEA2

) + I
(
PB3 : PEB1 , PEB2

)
= 1

2
log2

V
(
P̂A1

)
V

(
P̂A1

∣∣PEA1 , PEA2

) + 1

2
log2

V
(
P̂B3

)
V

(
P̂B3

∣∣PEB1 , PEB2

) .

(27)

In contrast, under slow fading channel, the channel trans-
mittance remains constant after a sufficient number of uses,
enabling remote users to estimate its actual value. At this
point, the key rate is averaged over the transmittance distribu-
tion, and the mutual information of the communicating parties
and Eve needs to be averaged as well [29]. Therefore, Eq. (15)
transforms to

Kslow = 1

�η

∫ ηmax
A(B,C)

ηmin
A(B,C)

dη
[
βIAB(AC,BC)

(
ηmin

A(B,C)

) − χ (E : γ )
]
.

(28)

In symmetric scenarios, all users experience interference via
fast-fading channels, and the transmittance for each channel
ηmin

A(B,C) follows the same probability distribution. Conse-
quently, the key rate becomes

K symmetric
fast = βIAB(AC,BC)

(
ηmin

A(B,C)

) − 1

(�η)3

×
∫ ηmax

A

ηmin
A

∫ ηmax
B

ηmin
B

∫ ηmax
C

ηmin
C

dηAdηBdηCχ (E : γ ).

(29)

B. Coherent attack

In this section, we will investigate the security of a more
general case in coherent attacks. Based on the de Finetti
theorem [37–39], a Gaussian-modulation protocol is secure
against general attack when it is secure against collective
attack. But in the actual security analysis, coherent attack is
more threaten to the protocol than collective attack when more
than one channel is used. This study focuses on multiparty
communication via fast-fading channel, in such scenarios, co-
herent attacks pose a greater threat to secure communication
than collective attacks due to the correlation between quantum
states across different channels. Consequently, the key rate is
reduced. Therefore, it is essential to reassess the impact of
coherent attacks on protocol security to demonstrate higher
security requirements [26]. This process is illustrated in Fig. 5.
Eve extracts three quantum modes in the auxiliary quantum
modes and injects them into three fast-fading channels. The
fourth quantum mode and one of the outcomes from each
channel’s beam splitter are stored in the QM. Eve measures
these quantum modes to obtain maximum information.

The reduced state ρEA,EB,EC of Eve can be determined in the
covariance matrix below

VEA,EB,EC =

⎛⎜⎝VA G1 G2

G1 VB G3

G2 G3 VC

⎞⎟⎠, (30)
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FIG. 5. EB Scheme for coherent attack via fast-fading channel.

where

VEA = VEA I,VEB = VEB I,VEC = VEC I,

G1 =
(

g1 0

0 g′
1

)
, G2 =

(
g2 0

0 g′
2

)
,

G3 =
(

g3 0

0 g′
3

)
.

(31)

The variances VEA , VEB , and VEC represent the thermal noise
injected by Eve into each channel. The correlations between
the noise added by Eve in the three channels are denoted as g1,
g2, and g3. Thus, the covariance matrix of the whole system
can be expressed as:

VA,B,C,Eve =
3⊕

k=1

V ′ ⊕ VEA,EB,EC , (32)

where

V ′ =
(

V I
√

V 2 − 1Z√
V 2 − 1Z V I

)
. (33)

Rearranging the covariance matrix in Eq. (32) in the order of
A, EA, B, EB,C, EC , and applying the conjugate unitary oper-
ation yields the full modal covariance matrix, which includes
A1, B1,C1, and Eve, is

U ′
DavidU

′
EveVA,EA,B,EB,C,ECU ′T

EveU
′T
David. (34)

In this process, U ′
David and U ′

Eve must remove the sev-
enth and eighth rows and columns of matrix BS′

A(B,C) from
Eq. (5) and W1(2,3,4) from Eq. (8) to match the dimensions
with VA,EA,B,EB,C,EC . Next, we should delete the rows and
columns related to Eve in Eq. (34) and rearrange accord-
ing to A1, B1,C1, D, E , F to obtain the covariance matrix
VA1,B1,C1,D,E ,F . Performing the same operations as in Eq. (11),
the displacement operation will not alter the covariance ma-
trix, resulting in covariance matrix VA1,B3,C3|XD,XE ,PF .

Once the covariance matrix is obtained, the calculation
of the key rate can commence. In the case of a fast-fading
channel, the key rate for the QCC scheme is given by

KRR
AB = βI

(
XA1 : XB3

) − H
(
ρEve : XA1

)
,

KRR
AC = βI

(
XA1 : XC3

) − H
(
ρEve : XA1

)
.

(35)

H (ρEve : XA1 ) represents the Holevo quantity of the quantum
state ρ, indicating the maximum information that Eve can
obtain during an attack, calculated as follows:

H
(
ρEve : XA1

) = S
(
ρA1,B3,C3

) − S
(
ρB3,C3|XA1

)
. (36)

S(ρA1,B3,C3 ) is calculated from the covariance matrix VA1,B3,C3

as

S
(
ρA1,B3,C3

) = h(ν1) + h(ν2) + h(ν3). (37)

Here, ν1, ν2, and ν3 are the symplectic eigenvalues of a matrix
[40]. Moreover,

h(x) := x + 1

2
log2

x + 1

2
− x − 1

2
log2

x − 1

2
. (38)

Similarly, it can be concluded that

S
(
ρB3,C3|XA1

) = h(ν4) + h(ν5). (39)

In this context, ν4 and ν5 represent the symplectic eigenvalues
of the covariance matrix VB3,C3|XA1

. For QSS schemes via fast-
fading channel, the key rate is

KRR
QSS = βI

(
PA1 , PB3 : PC3

) − 1

�η

∫ ηmax

ηmin

H
(
ρEve : PC3

)
, (40)

where

H
(
ρEve : PC3

) = S(ρEve) − S
(
ρEve|PC3

)
= S

(
ρA1,B3,C3

) − S
(
ρA1,B3|PC3

)
. (41)

S(ρA1,B3|PC3
) can be calculated from h(ν6) + h(ν7), where ν6

and ν7 are the symplectic eigenvalues of the covariance matrix
VA1,B3|PC3

.

V. SIMULATION AND PERFORMANCE ANALYSIS

To demonstrate higher security requirements, this sec-
tion primarily discusses coherent attacks. We denote the
transmittance of the channel between Alice (Bob, Charlie) and

David as ηA(B,C) = 10− LA(B,C)
10 , where LA(B,C) represents their

respective transmission distances. Each channel connected to
an untrusted third party, David, can be considered a fast-fading
channel. Both in the QCC and QSS schemes, these three
participants Alice, Bob, and Charlie are in the same status.
In order to analyze the performance of the protocol when the
distance between three users is asymmetrical, we set LA �= LB

[41]. On the other hand, in order to simplify the analysis, we
assume that Bob and Charlie are equidistant from David LB =
LC . The QCC and QSS schemes are analyzed independently.

A. Quantum cryptographic conference

We examine Eve’s symmetric attack on the channels
between Bob and Charlie, which prevents Alice from
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FIG. 6. The relationship between the key rate K and the trans-
mittance η under varying noise correlations.

establishing secure communication with either party, neces-
sitating the fulfillment of conditions VEB = VEC and g1 = g2.
To maximize the attack while minimizing the key rate, Eve
must increase the negative correlation of noise in each channel
as much as possible. In Fig. 6, we analyze two types of
entanglement attacks that maximize their effectiveness: one
where g1 is minimized and g3 is set to 0 (orange line), and
another where g1 is set to 0 and g3 is minimized (green line).
The other parameters are set as follows: �η = 0.05, VEC =
1.02, V = 20, LB = LC = 0.3, and β = 0.98. Compared to
the independent attack with g1 = g3 = 0 (blue line), the en-
tanglement attacks demonstrate greater aggressiveness, with
the attack where g1 is minimized and g3 is set to 0 showing
the best results. Also, it is not hard to find that the secret key
rate can exceed 1 when the channel loss is low. Different from
discrete variable quantum communication protocols, the key
rate of continuous variable quantum key distribution protocols
can exceed 1 due to the advantage of Gaussian modulation.
This is also one of the merits of CV QKD.

For MDI CV-QKD via fast-fading channel, we assume
that Eve employs the aforementioned independent attack. As
the variance V of Alice’s (Bob’s, Charlie’s) initial two-mode
squeezed state increases, improved modulation leads to higher
key rates. In Fig. 7, we illustrate the key rates for V = 15
(orange line), V = 20 (green line), and V = 25 (blue line),
with the following parameters set: �η = 0.05, VEC = 1.02,
LB = LC = 0.3 km, and β = 0.98. In fact, Alice, Bob, and
Charlie may all experience interference in fast-fading chan-
nel. Assuming that the channels used by all three follow the
same fading distribution, denoted as ηmax

A(B,C) = ηmin
A(B,C) + �η,

Fig. 8 illustrates the key rate curves for varying numbers of
interfered users. The orange line represents one user (Alice)
experiencing interference, the green line indicates two users
(Alice and Bob), and the blue line shows all three users af-
fected simultaneously. The other parameters are held constant
at �η = 0.05, VEA = VEB = VEC = 1.02, V = 20, β = 0.98,
and g1 = g2 = g3 = 0. Interference experienced by each user
results in a further decline in the key rate.
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FIG. 7. The relationship between key rate K and transmittance η

under different TMSS variances V .

B. Quantum secret sharing

We also consider a symmetric scenario similar to the QCC
scheme, where Eve simultaneously attacks the channels of
Alice and Bob, satisfying the conditions VEA = VEB and g2 =
g3. We proceed to analyze the impact of other variables on
communication. As the variance of the thermal noise injected
by Eve increases, the effect on the communicators intensi-
fies, leading to a decrease in the key rate. Other parameters

are set to �η = 0.05, g1 = 0, g2 = −
√

V 2
EC

−1

2 , V = 10, and
LB = LC = 0.3 km, β = 0.98. The results are illustrated for
VEC = 1.9 (yellow line), VEC = 2 (purple line), and VEC = 2.1
(red line) in Fig. 9.

Via fast-fading channel, an important metric is the prob-
ability distribution of transmittance changes �η. Greater
fluctuations in the channel in more significant losses for
honest users. Figure 10 illustrates the impact of different
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FIG. 8. The impact of the number of users affected by interfer-
ence on the key rate K .
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FIG. 9. The impact of different thermal noise variances VEC on
the relationship between key rate K and transmittance η.

probability distribution of transmittance changes �η on the
key rate, for �η = 0.05 (yellow line), �η = 0.10 (purple
line), �η = 0.15 (red line), and �η = 0.20 (green line). The

other parameters are set as follows: g1 = 0, g2 = −
√

V 2
EC

−1

2 ,
V = 10, LB = LC = 0.3 km, β = 0.98, and VEC = 1.9. As �η

increases, the intensified channel fluctuations lead to a rapid
decrease in the key rate.

In symmetric attacks, the use of reverse reconciliation,
to achieve a comparable key rate, Alice must reduce her
secure transmission distance as Bob and Charlie move far-
ther away from David (i.e., as LB and LC increase). This
adjustment increases the transmittance, allowing Eve to obtain
less information from Alice’s measurement data. Figure 11
illustrates the scenarios for LB = LC = 0.30 km (yellow line),
LB = LC = 0.35 km (purple line), and LB = LC = 0.40 km
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FIG. 10. The relationship between the probability distribution of
transmittance changes �η and the key rate K .
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FIG. 11. Connection between transmission distance L and key
rate K .

(red line), with the following parameters set: �η = 0.05, g1 =
0, g2 = −

√
V 2

EC
−1

2 , V = 10, β = 0.98, and VEC = 1.9.

VI. CONCLUSION

This work investigates the implementation of measure-
ment-device-independent multiparty quantum communica-
tion using CV GHZ states via fast-fading channel. In such
channels, the transmittance fluctuates due to various com-
plex factors, including atmospheric absorption and geometric
losses. We specifically consider a worst-case scenario in
which an eavesdropper fully controls the fast-fading chan-
nel, with the transmittance randomly varying within a certain
range. We demonstrate that the postselection scheme can
serve as a reasonable estimation model for the channel under
appropriate conditions, making it a viable subject for research
in free space. Additionally, we eliminate detector-side attack
interference and optimize under the worst channel condi-
tions, proving that both the quantum cryptographic conference
scheme and the quantum secret sharing scheme can withstand
attacks from untrusted parties in adverse propagation environ-
ments, thereby maintaining robustness.

It is worth pointing out that the proposed multipartite quan-
tum communication protocol is based on CV GHZ states. For
the QSS scheme, (2, 3) QSS can be supported. Further, the
GHZ-state QSS only support (n-1, n) threshold QSS when
scaling to more users. For the implementation of arbitrary
(k, n) threshold QSS, cluster state-based CV-QSS is a possible
solution, which needs further study. The differences among
the GHZ-states QSS, coherent-state-based QSS, and cluster-
state based QSS is given. For coherent-state-based CV-QSS,
it can be regarded as two or more continuous variable quantum
key distribution protocols. In the GHZ state, each pair of
particles is entangled. For cluster-state-based CV-QSS, the
three-particle GHZ state is in accordance with cluster state
as only one arrangement mode exists. For the cases of more
than three modes, cluster states have more arrange modes. As
to whether they can implement QSS, further study is needed.
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