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In this paper, we ¯rst study a generalized protocol of discrete modulation for continuous-variable
quantum key distribution with N coherent states in a Gaussian lossy and noisy channel and
investigate its performance against collective attacks. We ¯nd that discrete modulation proto-
cols with more than eight states do not perform better than the eight-state protocol. Then, we
study the improvement of this protocol by using a nondeterministic noiseless linear ampli¯er
(NLA) on Bob's detection stage. Results indicate that a NLA with gain g can extend the
maximum transmission distance by 50 log10g2 km and can increase the maximal tolerable excess
noise. With the reconciliation e±ciency !, we ¯nd the gain of NLA has a maximal value de¯ned
as gmax and by adjusting the gain to about !gmax one can have the best improvement on secret
key rate.
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1. Introduction

Quantum key distribution (QKD), as an important practical application of quantum
information, allows two distant parties (Alice and Bob) to share a common secret key
for cryptography in an untrusted environment.1,2 The security is guaranteed by the
laws of quantum mechanics, exactly the no-cloning theorem which can be seen as a
manifestation of Heisenberg uncertainty principle.3 QKD with continuous-variable
(CV), which encodes information in phase and amplitude quadratures of a coherent
state,4 is proven secure against collective attacks5,6 and coherent attacks.7 Any
eavesdropping will introduce extra noise between two legal communication parties
who will realize Eve's existence by detecting the excess noise.

The Gaussian-modulated CV-QKD protocol, which has been experimentally
demonstrated in both laboratory8!10 and ¯eld test,11 is sensitive to the excess noise
and has a limited range of transmission distance. With the increase of ¯ber length,
the error-correction procedure will be rather di±cult and complicated. There are two
possible approaches to solve this problem. One is to design better reconciliation
method12,13 which still has a considerable e±ciency at low signal-to-noise ratio
(SNR). The other is to use discrete modulation, such as the four-state protocol14

which has been studied both theoretically15!17 and experimentally.18 The four-state
protocol has a high reverse reconciliation e±ciency (at least 80%) at low SNR and
permits longer transmission distance than Gaussian protocol.

To this day, two-, four- and eight-state protocols have been studied.15,19,20 In fact,
discrete modulation with more than eight states is possible. A generalized protocol

using N coherent states j"ki ¼ j"e2ik#=Ni was considered in Ref. 21 under the
assumption of a lossy but noiseless quantum channel. In this paper, we study the
security of this generalized protocol in a Gaussian lossy and noisy channel. By
establishing the entanglement-based (EB) scheme of this general protocol, we
investigate the lower bound of secret key rate against collective attacks.

To improve the performance of CV-QKD, one possible way is to add an am-
pli¯er on Bob's detection stage.22 It has been shown that using a deterministic
optical ampli¯er can compensate the imperfections of a detector, but the e®ect is
limited. It is mainly because the ampli¯cation procedure of quantum signal will also
introduce extra noise. Interestingly, a recent paper23 indicates that by using a
nondeterministic noiseless linear ampli¯er (NLA) one can dramatically extend
the maximum transmission distance in Gaussian-modulated CV-QKD. Inspired
by Ref. 23, here we investigate the improvement of NLA used in the discrete
modulation protocols.

The paper is organized as follows: In Sec. 2, the general scheme for discrete-
modulated CV-QKD protocol with N coherent states is theoretically studied. In
Sec. 3, the e®ect of using NLA in the discrete modulation protocol is discussed with
numerical simulations. The conclusions are given in Sec. 4.
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2. General Scheme for Discrete Modulation Protocol

In this section, we ¯rst describe the general scheme for discrete modulation and
present the notations and assumptions. Then, we derive the expression for secret key
rate and discuss the performance of this protocol.

2.1. Description of the generalized protocol

In the prepare-and-measure (PM) version of the discrete modulation protocol, Alice

randomly chooses one of the coherent states j"ki ¼ j"e2ik#=Ni shown in Fig. 1, where
" is a positive real number and k 2 f0; 1; 2; . . . ;N ! 1g, and sends it to Bob with
probability 1=N. Hence, Bob sees a mixture $N given by:

$N ¼ 1

N

XN!1

k¼0

j"kih"kj ¼
e!"2

N

XN!1

k¼0

X1

m;n¼0

"mþne2ikðm!nÞ#=N
ffiffiffiffiffiffi
m!

p ffiffiffiffiffi
n!

p jmihnj:

Notice that if m! n & 0 ðmod NÞ,
PN!1

k¼0 e2ikðm!nÞ#=N equals to N , otherwise equals
to 0. Thus, we have:

$N ¼ e!"2
XN!1

k¼0

X1

m;n¼0

"NmþNnþ2kjNmþ kihNnþ kjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNmþ kÞ!

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNnþ kÞ!

p ¼
XN!1

k¼0

%kj&kih&kj; ð1Þ

where

%k ¼ e!" 2
X1

n¼0

ð"2ÞNnþk

ðNnþ kÞ!
;

j&ki ¼ e!" 2=2

ffiffiffiffiffi
%k

p
X1

n¼0

"Nnþk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNnþ kÞ!

p jNnþ ki
ð2Þ

for k 2 f0; 1; 2; . . . ;N ! 1g. A particular puri¯cation j!Ni of the state $N can be
obtained by Schmidt decomposition14

j!Ni ¼
XN!1

k¼0

ffiffiffiffiffi
%k

p
j&kij&ki ð3Þ

(a) N ¼ 4 (b) N ¼ 8 (c) N ¼ 16

Fig. 1. Discrete modulation with N coherent states.

Discretely Modulated CV-QKD with NLA

1350037-3

In
t. 

J. 
Q

ua
nt

um
 In

fo
rm

. D
ow

nl
oa

de
d 

fro
m

 w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
by

 M
r. 

Jia
n 

Fa
ng

 o
n 

07
/2

3/
13

. F
or

 p
er

so
na

l u
se

 o
nl

y.



such that $N ¼ TrAðj!Nih!N jÞ. As the states j"ki could be expressed as linear
combinations of j&ki, we have:

j!Ni ¼
1ffiffiffiffiffi
N

p
XN!1

k¼0

j kij"ki; ð4Þ

where the states

j ki ¼
1ffiffiffiffiffi
N

p
XN!1

n¼0

e2ikn#=N j&ni ð5Þ

are orthogonal non-Gaussian states. The covariance matrix 'AB has the following
form

'AB ¼
XI2 ZN(z

ZN(z Y I2

" #
; ð6Þ

where I2 ¼ 1 0

0 1

h i
and (z ¼ 1 0

0 !1

h i
. The diagonal elements of the covariance matrix

'AB can be calculated as follows24:

X ¼ h!N jðâ† þ âÞ2j!Ni ¼ h!N jðâ†Þ2 þ â2j!Ni|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
0

þ h!N j â†â þ ââ†
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

¼1þ2â †â

j!Ni

¼ h!N j1þ 2â†âj!Ni ¼ Tr½ð1þ 2â†âÞ$N (

¼ 1þ 2
XN!1

k¼0

%kh&kjâ †âj&ki ¼ 1þ 2"2; ð7Þ

Y ¼ h!N jðb̂
† þ b̂Þ2j!Ni ¼ h!N jðb̂

†Þ2 þ b̂
2j!Ni|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

0

þ h!N j b̂
†
b̂þ b̂b̂

†

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
¼1þ2b̂ † b̂

j!Ni

¼ h!N j1þ 2b̂
†
b̂j!Ni ¼ Tr½ð1þ 2b̂

†
b̂Þ$N (

¼ 1þ 2
XN!1

k¼0

%kh&k ĵb
†
b̂j&ki ¼ 1þ 2"2; ð8Þ

where â, â† and b̂, b̂
†
are the annihilation and creation operators of Alice's and Bob's

modes, respectively. The correlation term of covariance matrix is

ZN ¼ h!N jðâ † þ âÞðb̂† þ b̂Þj!Ni ¼ h!N jâb̂
† þ â †b̂j!Ni|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

0

þ h!N jâb̂þ â†b̂
†j!Ni

¼ h!N jâb̂þ â†b̂
†j!Ni ¼ 2Reh!N jâb̂j!Ni

¼ 2Re h!N j"2
XN!1

n¼0

%n!1ffiffiffiffiffiffi
%n

p j&n!1ij&n!1i

" #

¼ 2"2
XN!1

k¼0

ffiffiffiffiffiffiffiffiffiffi
%3
k!1

%k

s

: ð9Þ

When N ¼ 2; 4 and 8, the values of ZN coincide with previous results in Refs. 14
and 20. The covariance matrix in Eq. (6) has a similar form with the one in Gaussian-
modulated protocol, which uses the Gaussian distributed random numbers with

J. Fang et al.
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variance VA to complete a continuous modulation. In the covariance matrix of
Gaussian protocol, the diagonal elements are X ¼ Y ¼ 1þ VA and the correlation

term ZN is replaced by ZG ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 2
A þ 2VA

q
. Comparison between discrete modulation

ZN and Gaussian modulation ZG ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 2
A þ 2VA

q
as a function of " is shown in Fig. 2.

When VA ¼ 2"2 is small enough, ZN is indistinguishable from ZG, meaning that in
this region the mutual information between Bob and Eve is very similar with
Gaussian protocol. With the increment of VA, covariance Z4 and Z8 begin to deviate
from ZG, while Z16 is still close to Gaussian modulation.

Alice's modulated states are sent to Bob through the quantum channel and Bob
performs the heterodyne detection.36 He divides the signal into two beams by a
balanced beam splitter and applies homodyne detection on each of them, measuring
the amplitude quadrature q̂ on one of the signal beams and the phase quadrature p̂ on
the other. In order to measure the quadrature p̂, Bob dephases the local oscillator by
#=2. He uses both of the outcomes to infer the state Alice sends. For example, if Alice

sends the state j"ki ¼ j"e2ik#=Ni to Bob, the measurement results ðBq;BpÞ of

quadratures q̂ and p̂ are relevant to the corresponding quadratures of j"ki. That
means Alice and Bob share two correlated vectors ðAq;ApÞ ¼ ð" cos 2k#

N ;" sin 2k#
N Þ and

ðBq;BpÞ. Notice that there is no active basis choice in the measurement and no data is

discarded, so both of the quadratures can be used for key distribution.

2.2. Notations and assumptions

The PM version of the general discrete modulation protocol is described as follows:

. Alice randomly chooses a number k 2 f0; 1; 2; . . . ;N ! 1g with equal probability

and sends the coherent states j"ki ¼ j"e2ik#=Ni to Bob through a Gaussian lossy
and noisy quantum channel. The channel is characterized by a transmission

0 2 4 6 8 10
0

2

4

6

8

10

VA 2α2

Z

Fig. 2. Comparison of the correlation ZN for discrete modulation and ZG for Gaussian modulation as a
function of VA. Curves from top to bottom are ZG;Z16;Z8;Z4.
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e±ciency T0 and an excess noise "0, resulting in a noise variance of 1þ T0"0 at
Bob's input. She then records the quadrature information of this coherent state as

a vector ðAq;ApÞ ¼ ðReð"kÞ; Imð"kÞÞ ¼ ð" cosð2k#N Þ;" sinð2k#N ÞÞ.
. When Bob receives the state, he splits it into two beams by using a 50:50 beam

splitter and performs heterodyne detection. One output is directly measured by
homodyne detection and the other one is homodyned after dephased with #=2.
Both the results are kept by Bob as a vector ðBq;BpÞ.

The PM scheme described above is equivalent to the EB version shown in Fig. 3. In
the EB scheme:

. Alice prepares two-mode entanglement states j!Ni de¯ned in Eq. (4). She performs

projective measurements fj 0ih 0j; j 1ih 1j; . . . ; j N!1ih N!1jg on her half of the
states and sends the other half to Bob through the quantum channel. Since the

state j!Ni can be written as 1ffiffiffi
N

p
PN!1

k¼0 j kij"ki, Alice projects a coherent state j"ki
on Bob's mode with equal probability when her measurement results in a number
k 2 f0; 1; 2; . . . ;N ! 1g. She then records her measurement as a vector

ðAq;ApÞ ¼ ð" cosð2k#N Þ;" sinð2k#N ÞÞ.
. Bob's heterodyne detector is modeled by a beam splitter with transmission ) ¼ 0:5

and coupled with a vacuum state j0i. Bob measures the quadrature q̂ on one
output and the p̂ on another simultaneously. The results of the measurements are
Bq and Bp, which Bob writes them as a vector ðBq;BpÞ.

After the quantum transmission phase, Alice and Bob share two correlated vectors
x ¼ ðAq1 ;Ap1 ; . . . ;Aqm ;ApmÞ and y ¼ ðBq1 ;Bp1 ; . . . ;Bqm ;BpmÞ, where m is the number

of pulses they used for key distillation. The elements ðAqi ;ApiÞ in x have the discrete

values from fð" cosð2k#N Þ," sinð2k#N ÞÞg, k 2 f1; 2; . . . ;N ! 1g. The quantum channel

considered here is a normal linear model with the relation between Alice and Bob
such that,

Bqi ¼ tAqi þ zqi ;

Bpi ¼ tApi þ zpi ;
ð10Þ

where t ¼
ffiffiffiffiffi
T0

p
, zqi and zpi following a centered normal distribution with variance

1þ T0"0 where "0 is the channel excess noise. The main merit of a normal linear

Fig. 3. EB scheme of discrete modulation protocol.
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channel is that it can be featured by a transmission T0 and an added noise. These
parameters can be determined even when the modulation is discrete and can have the
same values as Gaussian modulation. Under this assumption, the covariance matrix
could be easily obtained and Eve's information can be bounded by using the Gaussian
optimality theorem.15

Finally, Alice and Bob perform classical data processing, including the reconcili-
ation and privacy ampli¯cation. Since the reverse reconciliation has been proven
more advantageous than direct one in CV-QKD performance,25 we mainly consider
the reverse reconciliation in this paper.

2.3. Performance of the protocol

Now we turn to consider the performance of the general discrete modulation protocol
with heterodyne detection. According to the fact that coherent attacks are the most
powerful eavesdropping attacks and are not more e±cient than collective attacks,5,6

we will analyze the security against collective attacks.
After passing through the Gaussian lossy and noisy channel, the covariance ma-

trix between Alice and Bob becomes

'AB ¼
'A CAB

CT
AB 'B

" #

¼
aI2 c (z

c(z bI2

" #

¼
ðVA þ 1ÞI2

ffiffiffiffiffi
T0

p
ZN(z

ffiffiffiffiffi
T0

p
ZN(z ðT0VA þ 1þ T0"0ÞI2

" #

; ð11Þ

where

ZN ¼ 2"2
XN!1

k¼0

ffiffiffiffiffiffiffiffiffiffi
%3
k!1

%k

s

;

%k ¼ e!" 2
X1

n¼0

ð"2ÞNnþk

ðNnþ kÞ!

ð12Þ

and VA ¼ 2"2 is Alice's modulation variance in PM scheme. According to the opti-
mality of Gaussian attacks, the secret key rate K of a bipartite quantum state $AB
with a covariance matrix 'AB (even non-Gaussian) is always larger than Gaussian

state $G
AB with the identical covariance matrix.5,6 So, we can establish a corre-

sponding Gaussian scheme with covariance matrix 'G
AB such that

'G
AB ¼

ðVA þ 1ÞI2
ffiffiffiffi
T

p
ZG(zffiffiffiffi

T
p

ZG(z ðT VA þ 1þ T"ÞI2

" #

: ð13Þ

To make 'G
AB ¼ 'AB, we have

T ¼ T0ðZN=ZGÞ2;

" ¼ ðZG=ZNÞ2ðVA þ "0Þ ! VA:
ð14Þ

Discretely Modulated CV-QKD with NLA
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With a reverse reconciliation e±ciency !, the secret key rate of the discrete modu-
lation protocol is

K ) KG ¼ !Iðx; yÞ ! *ðy;EÞ ð15Þ

that means KG is a lower bound on secret key rate for discrete modulation protocol.
The mutual information between Alice and Bob Iðx; yÞ with heterodyne detection
can be obtained from elements of the covariance matrix and given by:

Iðx; yÞ ¼ log2
ðaþ 1Þðbþ 1Þ

ðaþ 1Þðbþ 1Þ ! c2

" #
¼ log2 1þ TVA

2þ TVA þ T"

" #
: ð16Þ

Eve's information on Bob's measurement is given by the Holevo bound26:

*ðy;EÞ ¼ SðEÞ ! SðEjXBÞ; ð17Þ

where Sð*Þ denotes the von-Neumann entropy and E denotes Eve's state at the end of
the quantum channel shown in Fig. 3. For a n mode Gaussian state $, the von-
Neumann entropy can be calculated with its symplectic eigenvalues27:

Sð$Þ ¼
Xn

k¼1

Gð+kÞ; ð18Þ

where +k is the symplectic eigenvalue of the kth mode and Gð+Þ is de¯ned as,

Gð+Þ ¼ + þ 1

2

" #
log2

+ þ 1

2

" #
! + ! 1

2

" #
log2

+ ! 1

2

" #
: ð19Þ

Notice the fact that Eve has the ability to purify the states shared by Alice and Bob,
and after Bob's measurement the state $AE collapses into a pure state. Hence, Eve's
information on Bob's measurement can be calculated by

*ðy;EÞ ¼ Gð+1Þ þGð+2Þ !Gð+3Þ: ð20Þ

The ¯rst two symplectic eigenvalues +1;2 ) 1 are given by

+1;2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
½"+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"2 ! 4D

p
(

r
; ð21Þ

where " and D are de¯ned as

" ¼ a2 þ b2 ! 2c2;

D ¼ ðab! c2Þ2:
ð22Þ

The third symplectic eigenvalue +3 ) 1 is obtained from the covariance matrix of
mode A after Bob's measurements and can be expressed as28

+3 ¼ a! c2

bþ 1
: ð23Þ

J. Fang et al.
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Based on the above discussions, we calculate the theoretical secret key rate of
discrete-modulated protocol with heterodyne detection. Figures 4 and 5 show the
secret key rate of N ¼ 4; 8; 16 states. The curve of 16 states is almost the same with
the eight-state protocol. In Fig. 4, eight-state protocol can always achieve larger
secret key rate than four-state protocol at each modulation variance. Figure 5 shows
that with the same VA, eight-state protocol has the longer transmission distance and
higher secret key rate than the N < 8 states while protocols with N > 8 states will
not perform better than N ¼ 8. Considering the coding issue, the most e±cient
modulating method is to use N ¼ 2n states which needs only log2ðNÞ binary random
number generators to equiprobably produce the decimal number f0; 1; . . . ;N ! 1g
without redundancy. In this point of view, the most suitable discrete modulation
protocol is N ¼ 8.

0.0 0.2 0.4 0.6 0.8 1.0
10 6

10 5

10 4

0.001

VA 2α2

Se
cr

et
ke

y
ra

te
bi

t
pu

ls
e

Fig. 4. (Color online) Heterodyne detection for discrete-modulated protocols with di®erent VA ¼ 2"2 at
10dB channel loss. Curves from left to right represent N ¼ 4 (purple), N ¼ 8 (green), N ¼ 16 (blue,
dashed). "0 ¼ 0:005, ! ¼ 80%.
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0.01
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Se
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e

Fig. 5. (Color online) Maximized secret key rates with optimal VA. Curves from left to right represent
N ¼ 4 (purple), N ¼ 8 (green), N ¼ 16 (blue, dashed). "0 ¼ 0:005, ! ¼ 80%.
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Finally, let us discuss the reconciliation e±ciency ! in Eq. (15). In the calculations
above we choose ! ¼ 0:8. In fact, the reverse reconciliation of two-state and four-
state protocols can achieve more than 80% e±ciency at low SNR by using a capacity-
achieving code and a repetition code.14 In eight-state protocol, although the
modulation of each quadrature is nonuniform, one can still have a good error-
correction code, such as the Raptor codes at low SNR conditions.29,30,37 In strong loss
cases, a repetition code can be combined to raptor code to achieve the desired
reconciliation e±ciency.20

3. Improved Discrete-Modulated Protocol with a NLA

A NLA is a probabilistic device, which can amplify a coherent state without intro-
ducing extra noise. In recent years, NLA has been approximately implemented in
experiments31!33 and proved useful for quantum communications. In this section, we
will investigate the improvement of discrete-modulated protocol by using the NLA on
Bob's detection stage.

3.1. Nondeterministic noiseless ampli¯cation

The nondeterministic noiseless ampli¯er is described as a transformation of a co-
herent state j"i such that

j"ih"j ! Psjg"ihg"jþ ð1! PsÞj0ih0j; ð24Þ

where g ) 1 is the gain of ampli¯er and Ps is the success probability. An ideal NLA
can be de¯ned as an Fock basis operator

gn̂ jni ¼ gnjni; ð25Þ

where n̂ ¼ â†â is the photon number operator.
Consider a covariance matrix 'AB in the Gaussian modulation protocol

'AB ¼
aI2 c(z

c(z bI2

" #
: ð26Þ

Since the noiseless operator gn̂ is in the Fock basis, we cannot directly apply this
transformation on 'AB. However, inspired by Refs. 34 and 35, the elements of 'AB
and the density matrix $AB in Fock basis could be associated by Husimi Q-function

QðRÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det#AB

p

#2
e!RT#ABR; ð27Þ

where

#AB ¼ ð'AB þ I4Þ!1 ð28Þ

and the matrix #AB can be written as

#AB ¼
AI2 C(z

C(z BI2

" #
; ð29Þ

J. Fang et al.
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where A;B;C are functions of a; b; c. One can establish a relationship between ele-
ments of #AB and normalized density matrix elements in Fock basis. The NLA
transformation then can be simply written as,

Ĝ ¼ ÎA , gn̂B : ð30Þ

Since gn̂ is a Gaussian operator, it transforms a Gaussian state to another Gaussian

one. With straightforward calculation, the matrix # 0
AB after the ampli¯cation is35

# 0
AB ¼

AI2 gC(z

gC(z g2B! g2 ! 1

2

% &
I2

2

4

3

5: ð31Þ

Using the relation in Eq. (28), ¯nally we obtain the covariance matrix ' 0
AB after

ampli¯cation

' 0
AB ¼

a 0I2 c 0(z

c 0(z b 0I2

" #
; ð32Þ

where

a 0 ¼ aþ c2ðg2 ! 1Þ
2þ ð1! bÞðg2 ! 1Þ

;

b 0 ¼ 2þ ðbþ 1Þ
2þ ð1! bÞðg2 ! 1Þ ! 1;

c 0 ¼ 2cg

2þ ð1! bÞðg2 ! 1ÞÞ :

ð33Þ

In experiments the success probability Ps depends on many factors, but it can be

upper bounded by 1=g2.23 In fact, the implementation of a perfect NLA would be
quite di±cult. In recent experiments,31!33 researchers have used di®erent methods to
approximately realize the NLA. So, the experimental success probability is lower
than the theoretical prediction due to various limitations and imperfections. In this

paper, we use the upper bound Ps ¼ 1=g2 to investigate the best performance of an
ideal NLA, while in experiments the improvement of secret key rate may be reduced.

3.2. Modi¯ed secret key rate

The improved EB scheme of discrete modulation protocol using a NLA is shown in
Fig. 6. In this scheme, a NLA is placed at Bob's detection stage. After passing
through the quantum channel, the covariance matrix 'AB1

can be written as

'AB1
¼

ðVA þ 1ÞI2
ffiffiffiffiffi
T0

p
ZN(zffiffiffiffiffi

T0

p
ZN(z ðT0VA þ 1þ T0"0ÞI2

" #
: ð34Þ

As we discussed in Sec. 2, the lower bound of secret key rate in discrete-modulated
protocol can be estimated by an equivalent Gaussian protocol which has the identical

Discretely Modulated CV-QKD with NLA

1350037-11

In
t. 

J. 
Q

ua
nt

um
 In

fo
rm

. D
ow

nl
oa

de
d 

fro
m

 w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
by

 M
r. 

Jia
n 

Fa
ng

 o
n 

07
/2

3/
13

. F
or

 p
er

so
na

l u
se

 o
nl

y.



covariance matrix that

'G
AB1

¼
aI2 c(z

c(z bI2

" #
¼

ðVA þ 1ÞI2
ffiffiffiffi
T

p
ZG(zffiffiffiffi

T
p

ZG(z ðTVA þ 1þ T"ÞI2

" #

; ð35Þ

where T ¼ T0=F and " ¼ 2ðF ! 1Þ"2 þ F"0. Parameter F is de¯ned as F ¼
ðZG=ZNÞ2. Since the NLA always transforms a Gaussian state into another Gaussian
state, the covariance matrix after NLA can be obtained by using Eq. (33) and ¯nally
we have

'G
AB ¼

a 0I2 c 0(z

c 0(z b 0I2

" #
; ð36Þ

where

a 0 ¼ VA
4! ðg2 ! 1ÞT ðVA þ 2"! 2Þ

2! ðg2 ! 1ÞT ðVA þ "Þ

" #
;

b 0 ¼ 2þ ðg2 þ 1ÞT ðVA þ "Þ
2! ðg2 ! 1ÞT ðVA þ "Þ

;

c 0 ¼
2g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T ðVA þ 2VAÞ

p

2! ðg2 ! 1ÞT ðVA þ "Þ
:

ð37Þ

Parameters T and " are de¯ned in Eq. (14). According to the optimality of Gaussian
attacks, when the noiseless ampli¯cation is successful, the secret key rate will be lower
bounded by the following equation

K 0 ) !I 0ðx; yÞ ! * 0ðy;EÞ; ð38Þ

where the mutual information between Alice and Bob is

I 0ðx; yÞ ¼ log2
ða 0 þ 1Þðb 0 þ 1Þ

ða 0 þ 1Þðb 0 þ 1Þ ! c2

" #
ð39Þ

and * 0ðy;EÞ can be calculated by

* 0ðy;EÞ ¼ Gð+1Þ þGð+2Þ !Gð+3Þ; ð40Þ

Fig. 6. Improved discrete modulation EB scheme with a NLA.
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where GðxÞ is de¯ned in Eq. (19). Symplectic eigenvalues +1;2 ) 1 are determined by

the covariance matrix 'AB and can be calculated by the following equations

+1;2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
½"+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"2 ! 4D

p
(

r
; ð41Þ

where

" ¼ a 0 2 þ b 0 2 ! 2c 0 2;

D ¼ ða 0b 0 ! c 0 2Þ2:
ð42Þ

The third eigenvalue +3 ) 1 can be calculated using the same method described in
Sec. 2 and is given by

+3 ¼ a 0 ! c 0 2=ðb 0 þ 1Þ ð43Þ

As the ampli¯cation is nondeterministic, the ¯nal secret key rate Knd should
include the success probability such that

Knd ¼ PsK
0 ) 1

g2
½!I 0ðx; yÞ ! * 0ðy;EÞ(: ð44Þ

To make all the parameters have physical interpretations, for example, the
symplectic eigenvalues +1;2;3 must be larger than 1, the NLA gain should ensure

"2 ! 4D ) 0 and " - Dþ 1, where " and D are de¯ned in Eq. (42). The full
expression of maximum NLA gain is quite long. However, at small modulation var-

iance (e.g. " - 0:5) ZN . ZG ¼ 2"
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"2 þ 1

p
. Hence, the expression of gmax can be

simply written as

gmax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ "2Þ½2!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2! ð2! "ÞT"

p
(2

T"2ð2! "Þ2

s

: ð45Þ

The maximum NLA gain as a function of losses with di®erent " is shown in Fig. 7.
We can ¯nd that gmax increases with the channel losses and smaller " permits higher
maximum gain values.

3.3. Results and discussion

Now we will evaluate the performance of discrete-modulated CV-QKD using a non-
deterministic noiseless ampli¯er. As modulating with eight states is su±cient, here we
will investigate the secret key rate of the eight-state protocol with heterodyne de-
tection.

As we discussed in Sec. 3.2, Alice's modulation variance is an important parameter
in discrete modulation protocol. We ¯nd that with the increase of NLA gain, the
optimal VA will also gradually increase at a certain channel loss, shown in Fig. 8. That
means for di®erent NLA gain, we need to adjust VA legitimately to achieve the
maximum secret key rates.

Discretely Modulated CV-QKD with NLA
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The maximized secret key rate of eight-state protocol with a NLA is displayed in
Fig. 9. Alice's modulation variance VA is adjusted to the optimal value. We ¯nd that
there are two main improvements by using NLA: the prolongation of maximum
transmission distance and the increase of secret key rate. We calculate the maximum
channel losses and transmission distance of the eight-state protocol with NLA gain
g ¼ 1; 2; 3; 4; 5 with excess noise ¯xed to 0:005 and VA optimized to maximize the
secret key rate. Numerical results are shown in Table 1. When the secret key rate is

below 10!10 bit/pulse, the eight-state protocol with NLA gain g ¼ 2 and g ¼ 4 cor-

respond to the transmission of 1:63/ 10!4 (189.5 km) and 4:07/ 10!5 (219.5 km),

respectively, which are approximately 1=g2 of the original (without NLA) trans-

mission 6:48/ 10!4 (159.4 km). That means using NLA in discrete modulation

protocol can increase the maximum transmission distance by 50 log10g2 km, where
g is the gain of NLA.

0.0 0.2 0.4 0.6 0.8
1 10 6

5 10 6

1 10 5

5 10 5

1 10 4

5 10 4

0.001

VA

Se
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et
ke

y
ra

te
bi

t p
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se

Fig. 8. Heterodyne detection with a noiseless ampli¯er at 20 dB channel loss. From bottom to top: g ¼ 1,
g ¼ 2 and g ¼ 4. "0 ¼ 0:005, ! ¼ 80%.
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Fig. 7. Maximum NLA gain as a function of channel losses. Curves from bottom to top: " ¼ 0:5, " ¼ 0:4
and " ¼ 0:3. "0 ¼ 0:005.

J. Fang et al.

1350037-14

In
t. 

J. 
Q

ua
nt

um
 In

fo
rm

. D
ow

nl
oa

de
d 

fro
m

 w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
by

 M
r. 

Jia
n 

Fa
ng

 o
n 

07
/2

3/
13

. F
or

 p
er

so
na

l u
se

 o
nl

y.



The other main improvement is the secret key rate. When Alice and Bob ensure
their locations, the length of quantum channel is seldom changed. A more realistic
question is: at this distance, how should we adjust the NLA gain to obtain the best
performance. To solve this problem, we vary the NLA gain at di®erent channel losses
and calculate the secret key rate. We ¯nd that there is an optimal NLA gain gopt to

maximize the secret key rate for any channel losses, which cannot exceed the gmax

de¯ned in Eq. (45). Interestingly, the optimal NLA gain is also associated with the
reconciliation e±ciency !. According to Fig. 10, gopt increases with !, and reaches

gmax when ! ¼ 1. A more detailed results are shown in Table 2. When the losses are
10 dB and 20 dB, the optimal NLA gain are changed with di®erent reconciliation
e±ciency ! and we can give a approximate expression that gopt . !gmax. Although

the simulation results are not accurately equal to !gmax, but the curves are quite °at
around gopt shown in Fig. 10, meaning that if ! and gmax are known, one can ap-

proximately obtain the best performance by adjusting the gain to !gmax.
In previous simulations, we assume the excess noise "0 ¼ 0:005 which is a prac-

tical value in state-of-the-art implementations.9,11 However, when the "0 increases,
the quantum channel will be so noisy that one can hardly distill positive secret keys.
We investigate the maximal tolerable excess noise for the eight-state protocol, which
is shown in Fig. 11. Results indicate that using a NLA the tolerable excess noise can

Table 1. Maximum transmission distance with a NLA.

g Optimal VA Lmax/dB Tlim dmax/km

1 0.217 31.88 6:48/ 10!4 159.4
2 0.200 37.89 1:63/ 10!4 189.5
3 0.192 41.40 7:24/ 10!5 207.0
4 0.186 43.90 4:07/ 10!5 219.5
5 0.183 45.83 2:61/ 10!5 226.5
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Fig. 9. Heterodyne detection for eight-state protocol with a NLA. From left to right: g ¼ 1, g ¼ 2 and
g ¼ 4. Secret key is maximized by adjusting VA to the optimal value. "0 ¼ 0:005, ! ¼ 80%.
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Fig. 10. (Color online) Heterodyne detection for eight-state protocol with a NLA at 10 dB loss. VA ¼ 0:3,
" ¼ 0:005. From bottom to top: ! ¼ 0:7, ! ¼ 0:8, ! ¼ 0:9 and ! ¼ 1. Black points are the optimal gains.

Table 2. Optimal gain of the eight-state
protocol with a NLA.

Loss/dB ! gmax gopt gopt=gmax

10 0.80 8:36 6.73 0.805
10 0.85 8:36 7.16 0.856
10 0.90 8:36 7.58 0.907
10 0.95 8:36 8.01 0.958
20 0.80 26:38 20.92 0.793
20 0.85 26:38 22.29 0.845
20 0.90 26:38 23.64 0.896
20 0.95 26:38 25.01 0.948

g=1

g=2

g=4

10 15 20 25 30
0.005

0.010

0.015

0.020

Channel Losses dB

M
ax

im
um

ex
ce

ss
no

is
e

Fig. 11. Heterodyne detection for eight-state protocol with a NLA. VA ¼ 0:3, ! ¼ 80%.
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be increased, meaning that the improved protocol has a robustness against the
excess noise.

4. Conclusion

In this paper, we ¯rst study the general scheme of discrete-modulated CV-QKD
protocol and investigate its performance with di®erent number of states in a lossy
and noisy channel against collective attacks. Our results show that discrete modu-
lation protocols with more than eight states do not perform better than eight-state
protocol because their key rates are identical at low modulation variance ð" < 0:5Þ.
Concerning the e±ciency of coding and reconciliation, we ¯nd the eight-state
protocol is most suitable scenario.

Our results show that using a NLA in discrete-modulated protocol, the maximum

distance can be extended by 50 log10g2 km, where g is the gain of NLA. With the
increment of g, the maximal tolerable excess noise can also be increased. Interest-
ingly, the NLA gain cannot be arbitrary large and has a maximum value gmax for each
distance. We ¯nd there is an optimal NLA gain achieving the best performance,
which is approximately equal to !gmax. By adjusting NLA to the optimal gain, the
improved scheme allows higher secret key rates than the original scenario.
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