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Abstract The dynamics of classical and quantum correlations under nondissipative
and dissipative decoherences are analytically and numerically investigated with both
one-side measures and two-side measures. Specifically, two qubits under local ampli-
tude damping decoherence and depolarizing decoherence channels are considered. We
show that, under the action of amplitude damping decoherence, both the entanglement
and correlations of the different types of initial states with same initial values, suffer
different types of dynamics. Moreover, the transfers of the entanglement and correla-
tions between the system and the environment for different types of initial states are
also shown to be different. While for the action of depolarizing decoherence, there
does not exist sudden change in the decay rates of both the classical and quantum
correlations, which is different from some other nondissipative channels. Further-
more, the quantum dissonance can be found to keep unchanged under the action of
depolarizing decoherence. Such different dynamic behaviors of different noisy quan-
tum decoherence channels reveal distinct transmission performance of classical and
quantum information.

Keywords Quantum information · Classical correlation · Quantum correlation ·
Decoherence channel

1 Introduction

Quantum entanglement, which reals distinctive quantum property of correlations
in quantum systems, plays an essential role in understanding the nonlocality of
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1846 P. Huang et al.

quantum mechanics [1]. The entangled states can not be prepared with the help of
local operation and classical communication (LOCC) [2]. Entanglement may disap-
pear due to the interaction of a quantum system with its environment, which is known
as entanglement sudden death [3,4]. However, there exist quantum effects that display
the quantum feature without entanglement [5–8], such as the nonclassical features
of separable states [9,10], which can be prepared using only LOCC [11]. As shown
in [7,8], for the separable states which have zero entanglement but nonzero discord,
the alive quantum coherence can give a speedup in performing some tasks over the
best known classical counterpart in the non-universal model of quantum computation.
Therefore, quantum correlations are more general and more fundamental to quanti-
fying the quantumness of correlations. Many measures of quantum correlations have
been proposed [9,12–19], and the quantum discord [9,12] has recently received a great
deal of attention [7,8,20–33].

In quantum information theory, it is widely accepted that total correlations in a
bipartite quantum system ρAB [17,32,34] are measured by quantum mutual informa-
tion I(ρAB) defined as

I(ρAB) = S(ρA)+ S(ρB)− S(ρAB), (1)

where ρA and ρB are the reduced-density matrices of ρAB , and S(ρAB) =
−Tr(ρ log2 ρ) is the von Neumann entropy. It is quite nature to assume that the total
correlations contained in a bipartite quantum system may be separated to quantum
correlations Q(ρAB) and classical correlations C(ρAB), which leads to

Q(ρAB) = I(ρAB)− C(ρAB). (2)

When the classical correlations C(ρAB) is quantified via the one-side measurement on
the bipartite system [9], the quantum correlations Q(ρAB) is just identical to quan-
tum discord D(ρAB). Such quantum correlation is more general than entanglement,
which can be further separated as entanglement and the additional non-entanglement
quantum correlation [35]. To measure the non-entanglement correlation that may be
present in separable states [19], a new quantum correlation, i.e., quantum dissonance
is proposed. And it has been demonstrated theoretically [7] and experimentally [8]
that the separable mixed states have nonclassical correlations which leads to nonzero
discord. Moreover, these nonclassical correlations can be used to perform quantum
computation tasks and may have a significant role in quantum information protocols.

Understanding the dynamics of classical and quantum correlations have attracted
great attention, since the interaction between the quantum system and its environ-
ment is unavoidable. It is shown that the dynamics of quantum correlations measured
by quantum discord and entanglement under both Markovian [24] and Non-Markov-
ian [26,27] environments are very different. For the Markovian evolution [24], the
quantum discord decay exponentially and vanish asymptotically in the decoherence
behavior, and entanglement may exhibit sudden death [3]. Recently, the studies reveal
that the classical correlation may be unaffected by nondissipative decoherence [28]
and the bipartite quantum correlation might completely lost without being transferred
to the environment [29] for the Markovian case. Furthermore, quantum discord is
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Different dynamics of classical and quantum correlations under decoherence 1847

found to be also undestroyed by the nondissipative decoherence and there exists a
sudden transition from classical to quantum decoherence regime [36].

In this study, we investigate the dynamics of classical and quantum correlations
under two different decoherences, i.e., local nondissipative and dissipative deco-
herences. Specifically, we focus on two open noisy quantum channels, i.e., ampli-
tude damping decoherence and depolarizing decoherence channel. We investigate the
dynamics of classical and quantum correlations under the action of amplitude damping
decoherence channel with both one-side and two-side measures, and demonstrate that
the two-side measures of correlation is optimal. For different classes of initial states,
the correlations are found to suffer different types of dynamics. Moreover, the transfers
of correlations for different types of initial state between the bipartite quantum system
and the independent environments are analyzed. On the other hand, we show analyt-
ically and numerically that sudden changes of the decay rates of both classical and
quantum correlations under the action of depolarizing decoherence do not exist. Hence,
neither the classical nor the quantum correlation will be unaffected by the depolarizing
decoherence. However, we find the quantum dissonance, which is another measure of
quantum correlation similar with quantum discord but excluding entanglement, can
keep unchanged. To explore the physical origin of the different dynamic behaviors,
we adopt the definition of distance measure of correlations proposed in Ref. [19].

This paper is organized as follows. In Sect. 2, we take a brief introduction about the
measures of correlations, including classical correlation, quantum discord and total
correlation. In Sect. 3, we investigate the dynamics of correlations under the action of
amplitude damping and depolarizing decoherence, and explore the physical origin of
the dynamic behaviors. Finally, the conclusions are drawn in Sect. 4.

2 Measures of correlations

2.1 Classical and quantum correlations

In classical information theory, the mutual information between two random variables
A and B is given by Ref. [37]

I (A : B) = H(A)+ H(B)− H(A, B), (3)

where H(X) = −∑
x px log2 px and H(A, B) = −∑

a,b pa,b log2 pa,b are the Shan-
non entropies for X = A, B and the joint system AB, respectively. pa,b and pa =∑

b pa,b(pb = ∑
a pa,b) are the joint probabilities of the variables A, B and marginal

probability of A(B) respectively, when the variables A and B assuming the values
a and b. Also, the mutual information can be expressed in terms of the conditional
entropy equivalently as

J (A : B) = H(A)− H(A|B), (4)

where H(A|B) = −∑
a,b pa,b log2 pa|b is the conditional entropy of the variable A

given the variable B. It can be seen that Eq. (1) is just the extension of Eq. (3) to a
bipartite quantum state ρAB in quantum information theory. For a bipartite quantum
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1848 P. Huang et al.

system ρAB , it is known that the outcome of the state of A depends on the measurement
on B. Here the measurement performed on B is considered of von Neumann type and
can be described by a complete set of orthonormal projector {Π B

i } on subsystem B
with the outcome i . Hence, we get the quantum version of Eq. (4) as

J (ρAB) = S(ρA)− S{Π B
i }(ρA|B), (5)

where S{Π B
i }(ρA|B) = ∑

i qi S(ρi
A) is the conditional entropy of subsystem A, given

the knowledge of the state of B, with ρi
A = TrB((IA ⊗ {Π B

i })ρAB(IA ⊗ {Π B
i }))/pi

and pi = TrAB[(IA ⊗ {Π B
i })ρAB], IA is the identity operator on subsystem A.

For bipartite quantum states, one-side classical correlation between two subsystems
can be quantified as Ref. [9]

C(ρAB) = max
{Π B

i }
[S(ρA)− S{Π B

i }(ρA|B)], (6)

where the maximum is taken over the complete set of projective measurements {Π B
i }

on subsystem B, since projective measurement is demonstrated to be the optimal
measurement rather than the other general positive operator-valued measurements for
bipartite system. Different from the classical information theory, the Eqs. (1) and (6)
are not equivalent for correlated bipartite quantum states, the difference is just the
quantum discord D(ρAB).

Two-side measures of correlations, which are proposed in Refs. [13–15,29], is the
extension of one-side measures of correlations. The two-side classical correlation,
which can be calculated by local measurements on both subsystems of the bipartite
state, can be expressed as the “maximum classical mutual information” as

Ct (ρAB) = max
{Π A

i ⊗Π B
j }

I (ρAB), (7)

where I (ρAB) is the classical mutual information defined in Eq. (3), in which
H(A), H(B), and H(A, B) are the entropies of the probability distribution of subsys-
tems A and B and the composite system AB while performing a set of local projective
measurements {Π A

i ⊗Π B
j } on both subsystems. Thus, the two-side measures of quan-

tum correlation is given by

Qt (ρAB) = I(ρAB)− Ct (ρAB). (8)

It is worth noting that whether the one-side or the two-side measure, the classical
correlation naturally corresponds to the maximum classical mutual information that
can be obtained by local measurements on the composite system AB. The difference is
the type of the local measurements which are used to evaluate the classical correlation.
In some cases, the maximum classical mutual information obtained by the two-side
measurement will be larger than the one-side measurement. Hence, the two-side mea-
sure of classical correlation may be more suitable in these cases. In the following, we
will show that the two-side measure of classical correlation is more precise than the
one-side one when considering the dynamics of correlations under amplitude damping

123

Author's personal copy



Different dynamics of classical and quantum correlations under decoherence 1849

decoherence. However, for the bipartite states with maximally mixed marginal, the
two-side measures of classical and quantum correlations are numerically verified the
same as the the one-side measures of the corresponding correlations [29].

2.2 Relative entropy as a distance measure of correlations

To unify different measures of quantum correlations and make the known notions
including entanglement, quantum discord, classical correlation and total correlation
coincide with each others, the concept of relative entropy as a measure distance is used
to classify the different correlations in Ref. [19].

When the distance is measured by relative entropy, for a given composite quantum
state, the distance to its closest separable sate is the measure of relative entropy of
entanglement [38,39]. Also, the distance to its closest classical state is the measure
of quantum discord D, and this closest classical state to the closest product state of
the closest classical state is the measure of classical correlation C [19]. Furthermore, a
new quantum correlation, quantum dissonance Qd , is defined as the distance from the
closest separable state of the given state to the closest classical state of the separable
state. The dissonance is a measure of nonclassical correlation excluding entanglement.
For the Bell-diagonal state ρAB , the quantum dissonance Qd is given by

Qd(ρAB) = 1 +
4∑

i=1

pi log2 pi − (p1 + p2) log2(p1 + p2)

− (1 − p1 − p2) log2(1 − p1 − p2), (9)

where p1 = 1/2, pi = λi/2(1−λ1), and λ1 ≥ λ2 ≥ λ3 ≥ λ4 are the four eigenvalues
of state ρAB .

3 Dynamics of correlations under decoherence

In this section, we will investigate the dynamics of the classical and quantum correla-
tions as well as the entanglement under the action of two different types of noisy chan-
nels, i.e., the dissipative and nondissipative quantum channels. Especially, we focus
on two exact channels, i.e., the amplitude damping channel and depolarizing channel.

Our main goal here is to investigate the dynamics of classical and quantum correla-
tions as well as entanglement under noisy decoherence channels for different types of
initial states. In this study, we consider the scenario of two qubits under decoherence
channels, where the two qubits are a class of general two-qubit states with maximally
mixed marginals in the form

ρAB = 1

4

(

IAB +
3∑

i=1

ciσ
A

i ⊗ σ B
i

)

, (10)
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where σ k
i is the standard Pauli matrix in direction i acting on the subspace k = A, B,

and ci are real coefficients such that 0 ≤ |ci | ≤ 1 for i = 1, 2, 3. This class of states
include the Werner states (|c1| = |c2| = |c3| = c) and Bell states (|c1| = |c2| =
|c3| = 1).

Mathematically, a quantum channel can be represented by a completely positive,
trace-preserving (CPTP) linear map N , which maps from B(H1) to B(H2), where
B(H) denotes the set of bounded linear operators on the space H,H1 and H2 are the
input and output Hilbert space. According to the Kraus representation theorem [40],
the evolution of two-qubits state ρAB under the multimode quantum channel can be
expressed as

N (ρAB) =
∑

i, j

(Γ A
i ⊗ IB)(IA ⊗ Γ B

j )ρAB(IA ⊗ Γ B
j )

†(Γ A
i ⊗ IB)

†, (11)

where Γ k
i (k = A, B) are the Kraus operators that describe the noise channels per-

forming on subsystem k.

3.1 Amplitude damping channel

We first consider the dynamics of correlations under amplitude damping decoherence
with initial state ρAB given by Eq. (10). The amplitude damping channel NA exhibits
dissipative interaction between the quantum system and the environment, since there is
an exchange of energy between the system and the environment. The Kraus operators
are given by Ref. [41]

Γ k
0 =

(
1 0
0

√
1 − pk

)

, Γ k
1 =

(
0

√
pk

0 0

)

, (12)

with k = A, B. It should be mentioned that we use the general parameterized time
pk ∈ [0, 1] to describe the dynamical evolution of the system under the action of
decoherence channels, since it accounts for a large range of physical scenarios. For
instance, considering an infinite bosonic environment interacting with a two-level fer-
mionic system under Markovian approximation, pk will be a decreasing exponential
function of time [29]. We consider here the symmetric situation in which the decoher-
ence rates of both channels are equal, i.e., pA = pB ≡ p.

The density operator of the output state Na(ρAB) under the multimode amplitude
damping channel is given by

ρa
AB(p) = 1

4

⎛

⎜
⎜
⎝

c3q2 + (1 + p)2 0 0 (c1 − c2)q
0 q(1 − c3q + p) (c1 + c2)q 0
0 (c1 + c2)q q(1 − c3q + p) 0
c1 − c2)q 0 0 (1 + c3)q2

⎞

⎟
⎟
⎠ ,

(13)

with q = 1 − p. It has the eigenvalue spectrum,
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Different dynamics of classical and quantum correlations under decoherence 1851

λa
1(p) = 1

4
+ α + β − γ, λa

2(p) = 1

4
− α − β − γ,

λa
3(p) = 1

4
(1 − √

Δ)+ γ, λa
3(p) = 1

4
(1 + √

Δ)+ γ, (14)

where α = c1
4 q, β = c2

4 q, γ = 1
4 (p

2 + c3q2), and Δ = (c1 − c2)
2q2 + 4p2. We

can obtain the entropies of the marginal states under the amplitude damping channel
as S[TrA(B)] = h( q

2 ) for h(x) = −x log2(x) − (1 − x) log2(1 − x). Obviously, the
marginals of the state NA(ρAB) are not maximally mixed. In the followings, we will
demonstrate numerically that the two-side correlations is optimal. We first consider
the one-side correlations.

To calculate the one-side classical correlation in Eq. (6) of the state ρa
AB(p), we take

the complete set of orthonormal projectors {Π B
i = |�i 〉〈�i |, i =‖,⊥} on the subsys-

tem B, where |�‖〉 = cos(θ)|0〉+exp(iφ) sin(θ)|1〉 and |�⊥〉 = exp(−iφ) sin(θ)|0〉−
cos(θ)|1〉. The one-side classical correlation under amplitude damping channel may
be written as

C[ρa
AB(p)] = h

(q

2

)
− max(Λ1,Λ2,Λ3), (15)

whereΛ1 = 1
2 (1+ p)h{ 1

2 +[c3q2+ 1
2 p(1+ p)]/(1+ p)}+ 1

2 qh( 1
2 + 1

2 |p−c3q|),Λ2 =
h[ 1

2 + 1
2 (c

2
1q2 + p2)1/2], andΛ3 = h[ 1

2 + 1
2 (c

2
2q2 + p2)1/2]. It can be seen that the one-

side classical correlation depends on the initial state ρAB and parameterized time p.
Now we consider the two-side correlations. Supposing H(A), H(B) and H(A, B)

are the entropies of the probability distributions of the subsystem A, B and the com-
posite system AB resulting from the complete set of projective measurement {Π A

i ⊗
Π B

j , i, j =‖,⊥} on both subsystems. Hence, we obtain

H(A) = H(B) = h

{
1

2
[1 − p cos(2θ)]

}

, (16)

H(A, B) =
∑

i, j

Pi, j , (17)

where P‖,‖ = 1
4 {[c3q2+(1+ p)2] cos4(θ)+2q cos2(θ) sin2(θ)[1+c1+c2−c3q+ p+

(c1 −c2) cos(2φ)]+(1+c3)q2 sin4(θ)}, P‖,⊥ = P⊥,‖ = 1
4 {q(1−c3q + p)(cos4(θ)+

sin4(θ))+ 1
2 [1− (c1 +c2)q +c3q2 + p2 − (c1 −c2)q cos(2φ) sin2(2θ)]}, and P⊥,⊥ =

1
4 {(1+c3)q2 cos4(θ)+2q cos2(θ) sin2(θ)[1+c1+c2−c3q + p+(c1−c2) cos(2φ)]+
[c3q2 + (1 + p)2] sin4(θ)}. The two-side classical and quantum correlations are then
given by

Ct [ρa
AB(p)] = max(Ω1,Ω2,Ω3), (18)

Qt [ρa
AB(p)] = 2h

(q

2

)
+

4∑

k=1

λk log2 λk − Ct [ρa
AB(p)], (19)
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where Ω1 = 1
2 (1 + c1q) log2(1 + c1q) + 1

2 (1 − c1q) log2(1 − c1q),Ω2 = 1
2 (1 +

c2q) log2(1 + c2q)+ 1
2 (1 − c2q) log2(1 − c2q), and Ω3 = 2h(q/2)− 2 + 1

4 [c3q2 +
(1 + p)2] log2[c3q2 + (1 + p)2] + 1

4 (1 + c3)q2 log2[(1 + c3)q2]+ 1
2 q(1 − c3q + p)

log2[q(1 − c3q + p)].
It is too tedious to compare these two types of correlations with the analytical

expressions. However, we can numerically demonstrate that the two-side measures
of classical correlation will not be smaller than the one-side measures for any ini-
tial state ρAB . Hence, the two-side measures of correlations are optimal for state
ρa

AB(p). We plot the difference of two-side and one-side measures of classical cor-
relation dynamics δ = Ct [ρa

AB(p)] − C[ρa
AB(p)] in Fig. 1 when the initial state is

a Werner state with c1 = −c2 = c3 = c(0 ≤ c ≤ 1). It can be easily seen that
the difference δ is always nonnegative and becomes larger when c increasing to 1.
In the followings, the investigation of the dynamics of the correlations are based on
the two-side measures. It can be concluded from the expressions that we can find
neither a static nor a dynamic initial state to keep the classical or quantum correla-
tion unchanged under the amplitude damping decoherence, since the classical and
quantum correlations stated in Eqs. (18) and (19) are always related with the param-
eterized time p. Thus, there do not exist the sudden change and sudden transition
in the decay rates of the dynamics of these two correlations under amplitude damp-
ing decoherence. The dynamics of the classical and quantum correlations, the total
correlation, and the entanglement which is characterized by the entanglement of for-
mation (En) under the general condition c1 = 0.6, c2 = 0.4, c3 = −0.8 is plotted in
Fig. 2.

As proposed in Ref. [42], the Bell states |ψ±〉 = 1√
2
(|01〉±|10〉) are more efficient

for entanglement distribution than the Bell states |φ±〉 = 1√
2
(|00〉 ± |11〉) via ampli-

tude damping channel. Here, we extend the Bell states to Werner states, and show that
the quantum correlations under the amplitude damping decoherence exhibits different
dynamics for different types of Werner initial states. Exactly, we first consider two
types of static Werner initial states, i.e., c1 = −c2 = c3 = c and c1 = c2 = −c3 = c,
which correspond to ρws1

AB = 1−c
4 I + c|φ+〉〈φ+| and ρws2

AB = 1−c
4 I + c|ψ+〉〈ψ+|.

Figure 3 depicts the dynamics of the classical and quantum correlations, the total
correlation, and the entanglement En with c = 0.6. For two-qubit system, En is given
by the analytical formula

En(ρ) = h

[
1

2
(1 + √

1 − Υ )

]

, (20)

where Υ is the concurrence [43]. It can be seen from Fig. 3 that the quantum correla-
tion, the total correlation and the entanglement for Werner initial state ρws2

AB are always
larger than the state ρws1

AB , while the classical correlations for the two states keep the
same. Also, the entanglement sudden death exists for both Werner initial states, but
state ρws2

AB is more robust to resist this amplitude damping decoherence. It might be
considered that the different dynamics of the quantum correlation for the two Werner
initial states comes from the different dynamics of the entanglement. However, Fig. 4
shows that the nonentanglement quantum correlation defined as Qn = Qt − En also
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Different dynamics of classical and quantum correlations under decoherence 1853

Fig. 1 The difference of two-side and one-side measures of classical correlation dynamics for amplitude
damping channel with initial Werner state

Fig. 2 The dynamics of correlations and entanglement for the two-qubit system under the amplitude
damping decoherence channel for general initial states with c1 = 0.6, c2 = 0.4, c3 = −0.8. The solid line,
dashed line, dotted line, and dot-dashed line represent the total correlation, classical correlation, quantum
correlation and entanglement, respectively
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1854 P. Huang et al.

Fig. 3 The dynamics of correlations and entanglement for the two-qubit system under the amplitude damp-
ing decoherence channel for the Werner initial states with c = 0.6. Thick and thin lines denote for the static
Werner initial state ρ

ws2
AB and ρ

ws1
AB . The solid line, dashed line, dotted line, and dot-dashed line represent

the total correlation, classical correlation, quantum correlation and entanglement, respectively

contributes the difference for certain range of p, since the Qn for the two Werner
initial states are not identical.

To understand the dynamics of the correlations under dissipative amplitude damp-
ing decoherence, we explore the transfers of correlations and entanglement between
the two-qubit composite system and two independent environments for different types
of initial states. Thus, the density operator of the initial state including the environment
states is given by

ρAB E A EB = 1

4

(

IAB +
3∑

i=1

ciσ
A

i ⊗ σ B
i

)

⊗ |00〉E A EB , (21)

where |00〉E A EB is the vacuum state of the environments E A and EB for subsystem A
and B, respectively. Thus, the density operator of the whole output state Na(ρAB E A EB )

is given by

ρa
AB E A EB

(p) =
∑

m0,m1

Γm0ρABΓ
†

m1
⊗ |m0〉E A EB 〈m1|E A EB , (22)

where m0,m1 = 00, 01, 10, 11, and Γi j = (Γ A
i ⊗ IB)(IA ⊗ Γ B

j ) for i, j = 0, 1. For
simplicity, we only list the reduced density operators for partition E A EB, AE A and
AEB(B EB and B E A are identical to AE A and AEB for symmetry) as
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Different dynamics of classical and quantum correlations under decoherence 1855

Fig. 4 The dynamics of nonentanglement quantum correlation Qn for the two-qubit system under the
amplitude damping decoherence channel for the Werner initial states with c = 0.6. Solid and dashed lines
denote for ρ

ws2
AB and ρ

ws1
AB

ρa
E A EB

(p) = 1

4

⎛

⎜
⎜
⎝

(1 + q)2 + c3 p2 0 0 (c1 − c2)p
0 p(2 − p − c3 p) (c1 + c2)p 0
0 (c1 + c2)p p(2 − p − c3 p) 0
(c1 − c2)p 0 0 (1 + c3)p2

⎞

⎟
⎟
⎠ ,

ρa
AEB

(p) = 1

4

⎛

⎜
⎜
⎝

(1 + c3)(1 + pq)+ 1 − c3 0 0 (c1 − c2)
√

pq
0 p(1 + p − c3q) 0 0
0 0 q(1 + q − c3 p) 0
(c1 − c2)

√
pq 0 0 (1 + c3)pq

⎞

⎟
⎟
⎠ ,

and

ρa
AE A

(p) = 1

2

⎛

⎜
⎜
⎝

1 0 0 0
0 p

√
pq 0

0
√

pq q 0
0 0 0 0

⎞

⎟
⎟
⎠ .

It can be seen that the dynamics of the correlations and entanglement for partition
AE A are independent of initial state, but only depend on the characteristic of ampli-
tude damping channel. The dynamics of correlations and entanglement for partition
E A EB and AEB are plotted in Figs. 5 and 6, when the initial states are static Wer-
ner states ρws1

AB and ρws2
AB with c = 0.6. Considering partition E A EB in Fig. 5, the

quantum and total correlation, and the entanglement for Werner initial state ρws2
AB are

always larger than the state ρws1
AB , while the classical correlations for the two states
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1856 P. Huang et al.

Fig. 5 The dynamics of correlations and entanglement for partition E A EB under the amplitude damping
decoherence channel for the static Werner initial state with c = 0.6. Thick and thin lines denote for the static
Werner initial state ρ

ws2
AB and ρ

ws1
AB respectively. The solid line, dashed line, dotted line, and dot-dashed line

represent the total correlation, classical correlation, quantum correlation and entanglement, respectively

Fig. 6 The dynamics of correlations and entanglement for partition AEB under the amplitude damping
decoherence channel for the static Werner initial state with c = 0.6. Thick and thin lines denote for the static
Werner initial state ρ

ws1
AB and ρ

ws2
AB . The solid line, dashed line, dotted line, and dot-dashed line represent

the total correlation, classical correlation, quantum correlation and entanglement, respectively
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are also identical. Thus, the correlations and entanglement for partition E A EB is pos-
itively correlated with the correlations and entanglement of the system AB. On the
contrary with the system AB, there exists a entanglement sudden birth [44] for par-
tition E A EB but at different p for the two static Werner initial states. However, for
the partition AEB , the quantum correlation and entanglement for the Werner initial
state ρws2

AB are both zero, and all the correlations and entanglement for Werner initial
state ρws1

AB are larger than state ρws2
AB . Hence, the correlations and entanglement for

partition AEB is negative correlated with the correlations and entanglement of the
system AB.

This effect can be explained directly with the transfers of correlations and entan-
glement. For the Werner initial state ρws1

AB under the amplitude damping decoherence,
the correlations and entanglement are smaller in partition E A EB and system AB than
the initial state ρws2

AB , but they are all larger in partition AEB than the initial state ρws2
AB .

Therefore, the correlations and entanglement are transferred more averagely to all the
partitions for the Werner initial state ρws1

AB , but they are more concentrated to partition
E A EB and the system AB for the Werner initial state ρws2

AB .
Now we consider the case that the initial state is dynamic, i.e., the state changes with

time, which includes the states with self-induced coherence or self-induced decoher-
ence. In practice, the prepared initial quantum state may be unstable along with time,
the state itself may suffer other additional influence except the considered channel
decoherence. Our purpose here is to investigate the dynamic of classical and quantum
correlations of the initial states which suffer other additional influence and check the
infections introduced by these additional influence on the dynamic of the correlations
under the decoherence channels. For simplicity, we also consider two types of dynamic
Werner initial states, i.e., c1 = −c2 = c3 = p and c1 = c2 = −c3 = p, which cor-
respond to ρwd1

AB = 1−p
4 I + p|φ+〉〈φ+| and ρwd2

AB = 1−p
4 I + p|ψ+〉〈ψ+|. These two

initial states may become to the pure Bell states |φ+〉〈φ+| and |ψ+〉〈ψ+| with the
increase of p, which is valued as the parameterized time in the quantum decoherence
channel for simplicity.

The dynamics of correlations and entanglement for the two types of dynamic Wer-
ner initial states ρwd1

AB and ρwd2
AB for system AB, partition E A EB and partition AEB are

plotted in Fig. 7. It can been seen that the correlations and entanglement for dynamic
Werner initial states ρwd2

AB are also larger than the initial state ρwd1
AB for system AB

and partition E A EB , and smaller than the initial state ρwd1
AB for partition AEB . These

relations are the same as the case of the static Werner initial state ρws1
AB and ρws2

AB . As
p increasing to 1, the correlations and entanglement for partition AEB and partition
E A EB are also the similar as the static Werner initial state. However, the correlations
and entanglement vanish asymptotically for the system AB. And interestingly, we find
entanglement sudden birth for all the partitions. This is because, on the one hand, the
increase of p increases the entanglement of the initial states, but on the other hand,
it enhances the channel decoherence. The system-reservoir dynamics of classical and
quantum correlations under the amplitude damping decoherence channel have also
been studied in Ref. [29]. However, this work focuses on the consideration of one kind
of static Werner initial state, the dynamic Werner initial states and comparative study
of different kinds of Werner initial states are out of consideration.
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(a)

(b)

(c)

Fig. 7 The dynamics of correlations and entanglement for a system AB, b partition E A EB and c partition
AEB under the amplitude damping decoherence channel for dynamic Werner initial states. Thick and thin
lines denote for the dynamic Werner initial state ρ

wd2
AB and ρ

wd1
AB . The solid line, dashed line, dotted line, and

dot-dashed line represent the total correlation, classical correlation, quantum correlation and entanglement,
respectively

3.2 Depolarizing channel

The depolarizing channel ND is a nondissipative channel with Kraus operators,

Γ k
0 =

√

1 − 3pk

4
I, Γ k

i =
√

pk

2
σi (i = 1, 2, 3), (23)

for k = A, B. We also consider the symmetric situation here, i.e., pA = pB ≡ p. The
density operator of the state Nd(ρAB) under the multimode depolarizing channel may
be written as
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ρd
AB(p) = 1

4

⎛

⎜
⎜
⎝

1 + c3q2 0 0 (c1 − c2)q2

0 1 − c3q2 (c1 + c2)q2 0
0 (c1 + c2)q2 1 − c3q2 0
(c1 − c2)q2 0 0 1 + c3q2

⎞

⎟
⎟
⎠ , (24)

which has the eigenvalue spectrum,

λd
1(p) = 1

4
[1 + (c1 − c2 + c3)q

2], λd
2(p) = 1

4
[1 − (c1 − c2 − c3)q

2],

λd
3(p) = 1

4
[1 + (c1 + c2 − c3)q

2], λd
4(p) = 1

4
[1 − (c1 + c2 + c3)q

2]. (25)

Thus, the state ND(ρAB) can be also written as

ρd
AB(p) = λd

1(p)|φ+〉〈φ+| + λd
2(p)|φ−〉〈φ−| + λd

3(p)|ψ+〉〈ψ+|
+ λd

4(p)|ψ−〉〈ψ−|. (26)

The entropies of the marginal states remain constant under the depolarizing channel,
i.e., S[TrA(B)ρ

d
AB(p)] = 1. We take the complete set of orthonormal projectors {Π B

i =
|�i 〉〈�i |, i =‖,⊥} on the subsystem B. Then the reduced measured density operator
of the subsystem A under the depolarizing channel, ρi

A = TrB[Π B
i ND(ρAB)Π

B
i ]/qi ,

has the following eigenvalue spectrum,

ξ i
1,2 = 1

2
± 1

4
q2[c2

1 + c2
2 + 2c2

3 − (c2
1 + c2

2 − 2c2
3) cos(4θ)

+ 2(c1 + c2) cos(2φ) sin2(2θ)], (27)

and qi = 1
2 for i =‖,⊥. Hence, the one-side measures of classical correlation is

identical to the two-side measures of classical correlation. The classical and quantum
correlations under the depolarizing decoherence are given by

C[ρd
AB(p)] = 1 + h

[
1

2
(1 − χ)

]

, (28)

D[ρd
AB(p)] = 2 +

4∑

k=1

λd
k (p) log2 λ

d
k (p)− C[ρd

AB(p)], (29)

where χ = max(c1q2, c2q2, c3q2).
On the other hand, the quantum discord can be measured as relative entropy to its

closest classical state [19]. The closest classical state of the Bell-diagonal state ρd
AB(p)

in Eq. (26) is given by

ρcl = κ(p)

2

∑

i=1,2

|Ψi 〉〈Ψi | + 1 − κ(p)

2

∑

i=3,4

|Ψi 〉〈Ψi |, (30)
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with κ(p) = λd
1(p)+λd

2(p), where λd
1(p), λ

d
2(p) are the two largest eigenvalues given

by Eq. (25), and |Ψi 〉 are the corresponding Bell states. From Eq. (25), for a fixed initial
state, the two largest eigenvalues will be independent of p. Then the quantum discord,
i.e., the distance from the state ρd

AB(p) to its closest classical state ρcl will not change
for any p. Therefore, there do not exist sudden change and sudden transition in the
decay rates of both the classical and quantum correlations for any initial state under
the action of depolarizing decoherence, this is different from the other kinds of non-
dissipative channels, i.e. bit flip, phase flip and bit-phase flip decoherence channels.
The dynamics of the classical and quantum correlations, the total correlation, and the
entanglement En under the general condition c1 = 0.6, c2 = 0.4, c3 = −0.8 is
plotted in Fig. 8.

Considering the static Werner states ρws1
AB and ρws2

AB as the initial states, the dynamics
of the correlations and entanglement for these two initial states are identical. Also, we
find the dynamics of the correlations and entanglement for the dynamic Werner initial
states ρwd1

AB and ρwd2
AB are identical. The dynamics of the correlations and entanglement

for ρws1
AB with c = 0.6 and ρwd1

AB are plotted in Figs. 9 and 10. For the other nondissipa-
tive channels, such as the bit flip, phase flip and bit-phase flip decoherence channels,
the correlations of the two different types of Werner states can be found also exhibit
the same dynamics from [28].

Interestingly, the dynamics of the quantum dissonance Qd under the depolarizing
decoherence for static Werner initial states ρws1

AB and ρws2
AB are an identical constant

value, which is obtained as Qd = 0.1258 with independent of the value of c and p.

Fig. 8 The dynamics of correlations and entanglement under the depolarizing decoherence channel for
general initial states with c1 = 0.6, c2 = 0.4, c3 = −0.8. The solid line, dashed line, dotted line, and
dot-dashed line represent the total correlation, classical correlation, quantum correlation and entanglement,
respectively
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Different dynamics of classical and quantum correlations under decoherence 1861

Fig. 9 The dynamics of correlations and entanglement under the depolarizing decoherence channel for the
static Werner initial state ρ

ws1
AB with c = 0.6. The solid line, dashed line, dotted line, and dot-dashed line

represent the total correlation, classical correlation, quantum correlation and entanglement, respectively

Fig. 10 The dynamics of correlations and entanglement under the depolarizing decoherence channel for
the dynamic Werner initial state ρ

wd1
AB . The solid line, dashed line, dotted line, and dot-dashed line represent

the total correlation, classical correlation, quantum correlation and entanglement, respectively
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This is because the closest separable state of the ρd
AB and its closest classical state are

determined under this situation. However, the quantum dissonance of the unentangled
states ρu

AB with c1 = c2 = 0, c3 = c will increase monotonically to the fixed value,
since ρd

AB(p = 1) = 1
4 I. The dynamics of quantum dissonance Qd and entanglement

for the Werner initial states ρws1
AB and unentangled state ρu

AB with c = 0.6 are depicted
in Fig. 11. By comparison to the dynamic of the quantum correlation for the Werner
initial state ρws1

AB in Fig. 9, we can conclude that the constant quantum dissonance Qd in
this situation do not give a contribution on the decay of the quantum correlation (quan-
tum discord). However, this coincides with the subadditivity of correlations, since the
quantum dissonance and entanglement do not add to give the quantum discord but
larger than it [19].

Thus, we show there exist differences of the dynamics of classical and quantum
correlations under the nondissipative and dissipative decoherence channels, since the
dynamics of correlations and entanglement are different under the dissipative deco-
herence channels and identical under the nondissipative decoherence channels for
different types of initial states. And also, the dynamics of correlations are different
under different nondissipative decoherence channels. These differences of dynamics
come from the different types of interaction to the environments. For the dissipative
channels, there exist exchanges of energy between the system and the environment.
The outcomes show that the exchange of energy for amplitude channel suggests dif-
ferent dynamics of correlations and entanglement for different kinds of initial states.
While for the nondissipative channels, the exchanges of energy do not exist.

Fig. 11 The dynamics of quantum dissonance Qd and entanglement for the Werner initial states ρ
ws1
AB and

unentangled state ρu
AB with c = 0.6. The solid line, dashed line, dotted line, and dot-dashed line represent

the entanglement for ρ
ws1
AB , quantum dissonance for ρ

ws1
AB , entanglement for ρu

AB and quantum dissonance
for ρu

AB , respectively
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4 Conclusion

We investigate the dynamics of classical and quantum correlations under nondissipa-
tive and dissipative decoherences with analytically and numerically methods based on
one-side measures and two-side measures. Exactly, we investigate two qubits under
local depolarizing decoherence channel and amplitude damping decoherence channel
for the static and dynamic initial states. We show that, under the action of amplitude
damping decoherence, for two types of static and dynamic Werner initial states with
the same initial entanglement and correlations, exhibit different types of dynamics.
Specifically, the type of Werner states ρws2

AB , ρ
wd2
AB are more robust to resist decoherence

than the statesρws1
AB , ρ

wd1
AB correspondingly. Moreover, the transfers of the entanglement

and correlations between the system and the independent environments are explored.
It can be seen that the transfers of the correlations and entanglement for the type of
Werner states ρws1

AB are more average to different partitions than the states ρws2
AB .

While for the action of depolarizing decoherence, we show numerically that there
does not exist sudden change in the decay rates of both the classical and quantum cor-
relations, and the classical and quantum correlations can not keep unchanged under
the decoherence, which is different from some other nondissipative channels, such as
the phase flip, bit flip and bit-phase flip decoherence channels. It has demonstrated
that the classical and quantum correlations can keep unchanged and there exist sudden
change and sudden transition under thses decoherence channels. Also, the dynamics
of the correlations and entanglement for the two types of static and dynamic Werner
initial states are found to be identical. Furthermore, the quantum dissonance for the
static Werner initial state ρws1

AB and ρws2
AB can be unaffected, but the quantum dissonance

of the unentangled states increases monotonically by the action of depolarizing deco-
herence. Such different dynamic behaviors of different noisy quantum decoherence
channels reveal distinct transmission performance of classical and quantum informa-
tion. This performance of the correlations and entanglement for different types of
quantum states are useful for quantum communication and quantum computation.
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No. 60773085, No. 60970109, and No. 60801051), and NSFC-KOSEF International Collaborative Research
Funds (Grant No. 60811140346, and No. F01-2008-000-10021-0).

Appendix

Calculation of the quantum dissonance Qd of the Bell-diagonal states. Consider the
Bell-diagonal state ρ = ∑4

i=1 λi |Ψi 〉〈Ψi |, where λi are ordered in nonincreasing size
and |Ψi 〉 are the four Bell states. The closest separable state is σ = ∑4

i=1 pi |Ψi 〉〈Ψi |
where p1 = 1/2 and the other probabilities are pi = λi/[2(1 − λ1)] [39]. Also,
the closest classical state for σ is obtained as χ = ∑4

i=1 qi |Ψi 〉〈Ψi |, where q1,2 =
(p1 + p2)/2, q3,4 = (1 − p1 − p2)/2. The quantum dissonance of state ρ can be
calculated as

Qd = S(σ‖χ)
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= −Tr(σ log2 χ)+ Tr(σ log2 σ)

= −Tr

(
4∑

i=1

pi |Ψi 〉〈Ψi | log2

4∑

i=1

qi |Ψi 〉〈Ψi |
)

+ Tr

(
4∑

i=1

pi |Ψi 〉〈Ψi | log2

4∑

i=1

pi |Ψi 〉〈Ψi |
)

= −
4∑

i=1

pi log2 qi +
4∑

i=1

pi log2 pi

= 1 +
4∑

i=1

pi log2 pi − (p1 + p2) log2(p1 + p2)

− (1 − p1 − p2) log2(1 − p1 − p2). (31)
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