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Abstract In this paper, how the dynamics of continuous variable entanglement affects
quantum dense coding is quantitatively investigated. The spectrum of environment is
Ohmic-like spectrum. The analytical expression of the mutual information is based on
the assumption of weak system-reservoir interaction without Markovian and rotating wave
approximation. By plotting the mutual information in terms of environment parameters
such as reservoir temperature and spectral density, it’s found that the mutual information of
dense coding is monotonically decreasing function for Markovian interaction in Ohmic-like
environments, while it oscillates for non-Markovian ones. Besides, it’s suggested to select
proper transmittance of beam-splitter to improve the performance of dense coding.
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1 Introduction

Entanglement is a quantum physics phenomenon, which has important applications in quan-
tum communication [1]. Quantum dense coding [2], is one of the important applications
of quantum communication, which has been demonstrated in experiment in discrete vari-
able [3]. It can transmit two bits of classical information by only one qubit of quantum
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information with the help of entanglement. Recently, quantum dense coding with continu-
ous variable has been proposed in theory [4] and demonstrated in experiment [5]. Later, a
quantum controlled dense coding scheme with bright tripartite entangled states comes up [6]
and demonstrated in experiment [7].

However, whether the continuous variable quantum dense coding succeeds or not is
dependent on the longevity of entanglement states in two-mode or multimode quantum sys-
tems. The unavoidable interaction between systems and exterior environments will result
in the presence of decoherence, which will degenerate entanglement [8], and weaken the
performance of dense coding. In this paper, for the independent and common Bosonic struc-
tured environment, we use the physical models provided by R. Vasile et al. in [9, 10] where
only the weak system-environment coupling is assumed during the derivation process, and
the Markovian approximation and rotating wave approximation are not assumed. Compared
with the beamsplitter model, where we only care about the decoherence and entangle-
ment losses for simplification, this model develops a deep and precise understanding on
the dynamical features of these phenomena, which can help us to consider a real physical
system to control the decoherence and disentanglement and assure that the survival time
of entanglement is longer than the time needed for information processing. In this model,
we study the effects of environment and derive the analytical expression of channel capac-
ity which qualifies the performance of CV dense coding in terms of both environmental
parameters and systemical ones and most of effects are detailed investigated.

This paper is organized as follows. In Section 2, the mutual information of quantum
dense coding is derived in the terms of the elements of the evolved covariance matrix of
CV two mode squeezed states generated by non-degenerate optical parametric amplifier. In
Section 3, we first describe the physical models proposed by R. Vaile et al. [9, 10] in which
the two mode Gaussian state evolves. And then based on the analytic expressions of mutual
information in Section 2, we give the numerical simulations which show the performance
of dense coding depends on the environmental and systemical parameters. The conclusions
are drawn in Section 4.

2 Channel Capacity of Quantum Dense Coding Under Bosonic Structured
Environments

The executive processes of CV dense coding under independent and common environment
are depicted as Fig. 1a and Fig. 1b respectively. Alice and Bob firstly share an Einstein-
Podolsky-Rosen(EPR) entangled state approximated by the two-mode squeezed state with
characteristic function as

χab(λa, λb) := T r [ρabD (λa)D (λb)] = exp
{
−1
2
$T σab$ − i$T Xab

}
. (1)

whereD(α) = exp(αâ†−α∗â) is displacement operator and â denotes the destroy operator,
λa = − i√

2
(xa + ipa), λb = − i√

2
(xb + ipb) and $ = (xa, pa, xb, pb)

T . Here we define

the momentum operator and position one as Xj = 1√
2
(âj + â†j ), Pj = − i√

2
(âj − â†j )

respectively. The covariance matrix σab of mode a and mode b reads as

σab =
(
A0 C0
D0 B0

)
(2)
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Fig. 1 (Color online) Quantum dense coding under effects of (a) independent Bosonic environment and
(b) common Bosonic environment. Here Entanglement Source denotes device that can generate EPR entan-
gled state, BS denotes beam splitter, and the Arabic numbers denote the modes. Dx and Dp are balanced
homodyne detectors. D(α) is displacement operator

where A0 = 1
2 cosh(2r) · I, B0 = 1

2 cosh(2r) · I, C0 = D0 =
diag( 12 sinh(2r),− 1

2 sinh(2r)), r stands for the squeezing parameter, and I is 2×2 identity
matrix. And the average values read as

Xab = T r
[
ρab(Xa, Pa,Xb, Pb)

T
]
= (0, 0, 0, 0)T . (3)

Because of the unavoidable interaction between system and environment, the state ρab
at time t = 0 will evolve into state ρt

ab at time t according to the open-system master
equation [11]. Because of the one-to-one corresponding relationship between quantum state
ρij and its characteristic function χij (λi , λj ) reading as

ρij = 1
π2

∫
d2λid

2λjχij (λi , λj )Di(−λi )Dj (−λj ), (4)

it is convenient to investigate the evolvement of entangled Gaussian states by studying that
of the corresponding characteristic function. For Gaussian evolution such as the interaction
between oscillators and Bosonic environments which is used in this paper, the corresponding
characteristic function χab(λa, λb) still remain its Gaussian form reading as

χ t
ab(λ

t
a, λ

t
b) = exp

{
−1
2
$T σ t

ab$ − i$T X
t
ab

}
, (5)

where the covariance matrix has the most general form which certainly includes the case
for interaction between systems and Bosonic structured reservoirs,

σ t
ab =

(
At Ct

Dt Bt

)
(6)

where At =
(
A11 A12
A12 A22

)
, Bt =

(
B11 B12
B12 B22

)
, Ct = (Dt )

T =
(
C11 C12
C21 C22

)
. In the next

section, the exactly covariance matrix will be given for independent Bosonic reservoir and
common one.
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Here it’s assumed that the average value remains unchanged, because if the average value
is unknown to Alice and Bob, they just cannot implement the dense coding protocol, and
if the average value is changed they can simply apply additional displacement operation to
make them zero. That is to say,

X
t
ab = Xab = (0, 0, 0, 0)T . (7)

All above parameters have different expressions for different interaction styles in the dif-
ferent environments. The general form is presented for the convenience of obtaining the
general expression of channel capacity of quantum dense coding for Bosonic environments.
All above parameters will have the different values for the independent environment (See
Fig. 1a) and common environment (Fig. 1b) even both for Bosonic environment.

Alice modulates the information Ain = Xin + iPin on the quantum mode by applying
the displacement operator D(αin) on mode A, then she sends it to Bob. Bob measures X2
and P1 which are obtained by combining mode A and mode B using beam splitter. Then he
could obtain the information modulated by Alice. Here we assume that the two-dimension
random variable Ain follows Gaussian possibility density function (PDF) P(xin, pin) with
the average value Ein = (0, 0)T and with the covariance matrix

(in =
(

σ 2 0
0 σ 2

)
(8)

The characteristic function of the disturbed EPR entangled states of modes 5 and 6 are
described by (5–6). Here displacement operation, beam splitter and homodyne measure-
ment are Gaussian operations which transform Gaussian state into another Gaussian state, it
is enough to investigate the evolution of both average values and covariance matrix. The dis-
placement operator D(αin) changes only the average value of ρt

ab to E = (xin, pin, 0, 0)T

and keeps the covariance matrix. The beam splitter transform the average values and
covariance matrix as following,

X12 = SE = (cos θxin, cos θpin, sin θxin, sin θpin)
T (9)

σ12 = Sσ t
abS

T =
(

Ãt C̃t

C̃T
t B̃t

)

=

⎛

⎜⎜⎝

a11 a12 c11 c12
a12 a22 c21 c22
c11 c21 b11 b12
c12 c22 b12 b22

⎞

⎟⎟⎠ (10)

where Ãt = cos2 θAt + cos θ sin θ(Ct + CT
t ) + sin2 θBt , C̃t = sin θ cos θ(At −

Bt) + sin2 θCT
t − cos2 θCt , B̃t = cos2 θAt − cos θ sin θ(Ct + CT

t ) + sin2 θBt , S =(
cos θI sin θI

sin θI − cos θI

)
is the transform matrix of beam splitter in phase space, here I is

2 × 2 identity matrix and θ represents the transmittance t of beam splitter with the rela-
tion t = cos2 θ, θ ∈ [0, π

2 ]. Thus the characteristic function of quantum state ρ12 can be
expressed as

χ12(x1, p1, x2, p2) = exp
(

−1
2
$T σ12$ − i$T X12

)
(11)

where $ = (x1, p1, x2, p2)
T . The Wigner function W12(x1, p1, x2, p2) is Fourier transfor-

mation of χ12(x1, p1, x2, p2). So Wigner functionW12(x1, p1, x2, p2) can be obtain by the
following equation,

W12(x1, p1, x2, p2) =
∫

dx′
1

∫
dp′

1

∫
dx′

2

∫
dp′

2

exp[−i(x1x
′
1 + p1p

′
1 + x2x

′
2 + p2p

′
2)]χ12(x

′
1, p

′
1, x

′
2, p

′
2). (12)
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It is easy to obtain the conditional PDF of the measurement result of X2 and P1 according
to the following equation,

P [(x2, p1)|(xin, pin)] =
∫

dp2

∫
dx1W12(x1, p1, x2, p2)

=
∫

dx′
2

∫
dp′

1 exp[−i(x2x
′
2 + p1p

′
1)]χ12(0, p′

1, x
′
2, 0). (13)

According to (9–11) and (13), we can calculate the PDF P [(x2, p1)|(xin, pin)] which is
Gaussian PDF with the average values EB|A and and covariance matrix (B|A,

EB|A = (sin θxin, cos θpin)
T (14)

(B|A =
(
b11 c21
c21 a22

)
(15)

Because P(xin, pin) is a Gaussian PDF with covariance matrix given by (8), so it is easy to
obtain the joint PDF of the random variables (x2, p1, xin, pin) according to the following
equation,

P(x2, p1, xin, pin) = P [(x2, p1)|(xin, pin)]P(xin, pin). (16)

According to (14-16), the covariance matrix of PDF P(x2, p1, xin, pin) read as

(−1
AB =

⎛

⎜⎜⎝

B C −B sin θ −C cos θ

C A −C sin θ −A cos θ

−B sin θ −C sin θ B sin2 θ + 1
σ 2 C sin θ cos θ

−C cos θ −A cos θ C sin θ cos θ A cos2 θ + 1
σ 2

⎞

⎟⎟⎠ , (17)

where A = b11
b11a22−c221

, B = a22
b11a22−c221

, C = − c21
b11a22−c221

. Thus covariance matrix of PDF

P(x2, p1) =
∫
dxindpinP (x2, p1, xin, pin) is expressed as

(−1
B = 1

σ 4 cos2 θ sin2 θ(AB − C2)+ (A cos2 θ + B sin2 θ)σ 2 + 1

×
(

σ 2 cos2 θ
(
AB − C2) + B C

C σ 2 sin2 θ
(
AB − C2) + A

)
. (18)

The mutual information between Alice and Bob is given by

I (A : B) =
∫

dx2

∫
dp1

∫
dxin

∫
dpinP [(x2, p1)|(xin, pin)]P(xin, pin)

ln{P [(x2, p1)|(xin, pin)]
P(x2, p1)

}

= 1
2
ln{Det((A)Det ((B)

Det ((AB)
}. (19)

The mutual information in terms of covariance matrix elements is given by substituting (8),
(17) and (18) into (19),

I (A : B) = 1
2
ln

{
σ 4 cos2 θ sin2 θ + σ 2 cos2 θb11 + σ 2 sin2 θa22 + b11a22 − c221

b11a22 − c221

}

(20)

If the exact expression of covariance matrix of characteristic function of entangled states
ρt
AB could be obtained, then the dynamical evolution of the mutual information for dense

coding could be obtained in terms of environmental parameters, thus the effect of environ-
ment on quantum dense coding can be quantitatively analyzed. In Section 3, the physical
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model for the interaction between oscillators and environment will be introduced, and then
give the results of numerical simulations.

3 Numerical Simulations

3.1 Physical Models of Evolution of Two-Mode Squeezed Vacuum States

As is well known, for different interactions in different types of environments, the covari-
ance matrix has different expressions. Here it’s assumed that two-mode squeezed vacuum
states ρab are in Bosonic structured reservoirs either in independent environment or com-
mon environment. The dynamical evolution processes of the corresponding characteristic
function and their covariance matrix of two-mode squeezed states are detailed investigated
according to open-system master equation [11, 12].

Previous work by Ruggero Vasile et al has shown how the two mode squeezed state will
evolve in both independent environment [9] and common environment [10]. In their work
they give the expression for the characteristic function as a function of t for the time, α for
the dimensionless system-reservoir coupling constant, ω0 for the oscillator frequency and
a reservoir described by temperature T characterized by a spectral density J (ω). In this

paper we choose the Ohmic-like spectral distribution as Js(ω) = ωc

(
ω
ωc

)s
exp

(
− ω

ωc

)
[9]

in which ωc stands for the cut-off frequency. When s > 1 it is called super-Ohmic, s = 1
Ohmic, and s < 1 sub-Ohmic. The exact expressions for σ t

ab is tedious and the detail of
expression can be found in [9] and [10] so that we just omit these expressions in this paper.

In this section the results of numerical simulation are shown. First the transmittance of
the beam splitter is set to 50 : 50

(
θ = π

4

)
and the mutual information varies with time.

Second we change θ according to σ t
ab to acquire more mutual information. Though it may

not be optimal, we will show that mutual information do increase through such a simple
change. Here we fix r = 0.5, α = 0.1 and σ = 1.5. It’s defined x = ωc

ω0
and τ = t × ω0 for

convenience. We also set s to 3, 1 and 0.5 to stand for super-Ohmic, Ohmic and sub-Ohmic
spectrum respectively.

3.2 Mutual Information for a Fixed Transmittance

In this section θ = π
4 all the time. Figure 2 shows how the mutual information will vary as

the time pass by for the independent environment, and Fig. 3 for the common environment.
Some interesting property can be concluded from these figures. First the mutual information
will oscillate when x ≪ 1, or it will decrease monotonically when x ≫ 1. Notice that when
x ≪ 1 the evolution process is non-Markovian evolution and otherwise it is Markovian
evolution. So it’s assumed that the mutual information is monotonically decreasing function
for Markovian interaction and oscillating for non-Markovian. Second, comparing Figs. 2
and 3, it can be seen that mutual information is some larger in common environment than
that in independent environment, especially when x ≫ 1. However whether in independent
or in common environment affects dense coding not so much as parameter x.

3.3 Improve the Mutual Information

In the previous section, it’s shown that generally the mutual information will decrease as
the two-mode squeezed state interacted with the some special environment parameters. It is
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Fig. 2 Mutual information in independent environment with high temperature, (a) x ≪ 1, namely x = 0.2
and (b) for x ≫ 1 namely x = 10. In both figure blue line for Ohmic, green line for Sub-Ohmic and red line
for Super-Ohmic spectra

unknown that how to achieve the optimal mutual information through a certain entangled
state or howmuch information can be obtained by the receiver Bob. However, in the protocol
described in Section 2 the transmittance(θ ) of the beam splitter is fixed, which implicate that
the mutual information between Alice and Bob could be improved by changing θ according
to σ t

ab. In fact, at a certain time σ t
ab is known and thus I (A : B) can be seen as s function of

θ . Differentiating (20) one will get the stationary points of I (A : B) and finally calculate θop
to improve the mutual information. Since the derivative and the expression of the stationary
point is very tedious and take a long but simple calculation, we just give some numerical
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Fig. 3 Mutual information in common environment with high temperature, (a) x ≪ 1, namely x = 0.2 and
(b) for x ≫ 1 namely x = 10. In both figure blue line for Ohmic, green line for Sub-Ohmic and red line for
Super-Ohmic spectra
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Fig. 4 The improvement of mutual information by changing θ . (a)x = 2.5, Ohmic and high temperature and
(b)x = 3, Ohmic and ZERO temperature. Blue line for fixed θ = π

4 and green for adjusted θ . It can be seen
that in both independent and common environment performance of dense coding is improved by choose θ

solution here and show how much information can be increased. In Fig. 4 it is shown that
in both independent and common environment the mutual information can increased by
changing θ . In fact π

4 is the optimal chosen of θ at t = 0, but probably not the optimal one
at other time. Figure 5 illustrates how to chose proper θ to obtain more mutual information.
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Fig. 5 Blue line shows the suitable θ at different time and the green line shows the maximum mutual
information that can achieved only by changing θ . Here x = 3, Ohmic and common environment at high
temperature



2320 Int J Theor Phys (2015) 54:2312–2320

4 Conclusion

In this paper it’s analyzed how the continuous dense coding will be affected by the environ-
ment. The analytical expression of mutual information between Alice and Bob is given when
an arbitary two mode Gaussian state is applied. How the mutual information will change as
time pass by is numerically simulated and plotted under various conditions. At last it’s sug-
gested to change proper transmittance of beam splitter to improve the performance of dense
coding. It’s shown that the mutual information can be enhanced by such a simple method.
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