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A series of quantum voting protocols of continuous variables is proposed. Three methods are employed to
ensure that the quantum voting obeys some desirable rules. Entanglement is used to keep voters away from the
voting results. We enable voters to operate identically to represent the same vote to prevent the tallyman from
gaining information about individual voters. We also propose an effective scheme to prevent voters from voting
more than once. In both two-valued and multivalued ballot protocols, several specific constraints are set to meet
the rules.
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I. INTRODUCTION

With the development of technology, society automatiza-
tion and computation becomes a general trend. This trend
expanded into nearly all aspects of our lives, including such
subtle areas as the voting procedure in various contexts:
from governmental elections to decision making in rather
small groups like councils. As a result, a lot of protocols for
electronic voting have been proposed and successfully applied
in the last decade [1]. The protocols belong to the scope of the
science of cryptography, because they meet the information
security problems of confidentiality, authentication, and data
integrity. In modern electronic voting systems, information
security is ensured by public-key cryptography and secrecy
is guaranteed under conditions of limited computational
resources. With the development of quantum computers this
condition is no longer secured, which inspires us to develop
unconditionally secure voting schemes and protocols. An
effective means to solve this is to use quantum systems as
information carriers, as proven by the unconditional quantum
key distribution [2,3].

In this paper, we describe quantum protocols for voting and
for the related task of surveying. Surveying and voting are
the same in many respects. The biggest difference between
voting and surveying is the value of the vote. The value of the
vote in surveying is not restricted to a binary yes or no but
may take any integer value. As such, surveying corresponds to
collecting estimates of some numerical quantity. The identities
of the people who make each bid are kept private and the sum
of the bids is made public. On the other hand, voting includes
comparative voting and binary-valued and multivalued ballots.
For comparative voting, we consider two parties voting on a
question with a yes or no answer. The aim is not to determine
the tally itself, but to determine whether both parties voted
identically without knowing the value of each of the votes.
We show that it is possible to encode the voting information
in an entangled state [4]. In binary-valued and multivalued
ballots, we consider more than two voters voting for two or
more parties. The collective result is made public and the the
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identities of voters are kept secret [5–7] just like in surveying.
But the values of the votes are binary.

The paper is organized as follows. We devote Sec. II to
the description of our protocols. Subsequently we describe
protocols for comparative voting and anonymous surveying.
In Sec. III, we discuss adaptations of the protocol for an
anonymous ballot for binary-valued ballots and the relation-
ship between the privacy of a vote and the ability for a
voter to cheat by making multiple votes. We then introduce
multiple-valued ballots and compare them to binary-valued
ballots. The conclusions are drawn in Sec. IV.

II. FUNDAMENTAL QUANTUM ANONYMOUS
VOTING PROTOCOLS

To describe the voting protocols, we will use terms such as
“voters,”, “votes,” and “tallyman” in the following discussion.
Before examining our voting protocols, we should first find the
property that a desirable voting satisfies. Based on quantum
protocols for anonymous voting and surveying [8], we set a
number of general rules.

(R1) The vote of each voter should be kept secret from all
other voters.

(R2) The tallyman calculating the collective quantity should
not be able to gain information about the voting of individual
voters.

(R3) The votes should be receipt-free. This is, it should
be impossible for a voter to prove how they voted to a third
party, even if they wanted to. This rule thwarts vote buying
and prevents coercion of the voter.

(R4) A voter may not make more than one vote, that is, the
value of each vote should not count as more than one vote.

In some cases, some people, such as the ballot agency where
the voters register their votes, will assist the voting protocols.
They should not gain any information in their assistance. Thus,
apart from these rules, an additional rule should also be obeyed.

(R5) People who assist the voting processing may exist, but
they should not gain any more information than the tallyman.

No one could get more information than the tallyman with
entangled states as the carrier. In our discussion we will not
consider rule (R5). We call a ballot that satisfies the rules
(R1)–(R3) but not (R4) an anonymous survey.
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In the following discussion, we will use the Heisenberg
picture to describe the continuous-variable quantum state.
The “position” and “momentum” are the canonical quantum
quadratures of a single-mode electromagnetic field defined
as x̂ = 1

2 (â + â†) and p̂ = 1
2i

(â − â†). Thus x̂ and p̂ obey the
Heisenberg uncertainty relation �x̂�p̂ � 1

4 . Now we examine
the two fundamental schemes: the comparative ballot and
anonymous surveying.

A. Comparative ballot

The first voting protocol we describe is a simple compar-
ative one, which is called a comparative ballot. This protocol
involves two voters, Alice and Bob, voting on a binary-valued
question, a question whose answer is a binary digit (for
example, a “yes” or “no” question). Such a ballot involves
only two voters, so it is easy for both of them to make the
conjecture about the other vote based on the tallyman’s result
and their own vote. So the comparative ballot does not satisfy
rule (R1), but only rules (R2)–(R4). The tallyman’s duty is to
examine whether they agree on the question, in other words,
to detect whether they have cast the same vote. However, the
tallyman should not gain any information about the individual
vote of either Alice or Bob.

To achieve the latter goal of the tallyman, the initial
ballot state should satisfy two requirements: (1) the state
cannot introduce too much noise in the final measurement
by the tallyman and (2) the quadratures of single modes
making up the state cannot be fully decided. Entanglement
is a solution to the problem. In our protocol we employ the
continuous-variable Einstein-Podolsky-Rosen (EPR) state [9]
as the initial ballot state. The EPR state is expressed in
Heisenberg operators as

x̂1 = 1√
2
e+r x̂

(0)
1 + 1√

2
e−r x̂

(0)
2 ,

p̂1 = 1√
2
e−r p̂

(0)
1 + 1√

2
e+r p̂

(0)
2 ,

(1)

x̂2 = 1√
2
e+r x̂

(0)
1 − 1√

2
e−r x̂

(0)
2 ,

p̂2 = 1√
2
e−r p̂

(0)
1 − 1√

2
e+r p̂

(0)
2 ,

where the superscript “(0)” denotes initial vacuum modes.
To begin with, the two modes 1 and 2 in Eqs. (1) are sent

to Alice and Bob, respectively. A voter makes a yes vote by
applying a local rotation transformation x̂ → −x̂, p̂ → −p̂

on the possessed mode. A no vote is cast by simply doing no
change on the mode. After voting, the tally man collects the
two modes x̂ ′

1,p̂
′
1 and x̂ ′

2,p̂
′
2, measures the position of both

modes, and then reduces them to classical results x ′
1 and x ′

2.
From the classical results we can identify whether Alice and
Bob have cast the same vote. Now we will explain how the
outcomes of the measurements reveal the votes. We assume r

in Eqs. (1) satisfies r → ∞ in the following discussion. Under
this condition, the EPR state in Eqs. (1) is an eigenstate of total
momenta p1 + p2 = 0 with relative positions x1 − x2 = 0.
When Alice and Bob cast the same votes, the two modes either
remain unchanged or both are rotated. This will result in no
change of relative positions x ′

1 − x ′
2 = 0. When Alice and Bob

cast different votes, one of the modes will be rotated while the
other will not. In this case, the relative positions will no longer
be zero but the sum of positions x ′

1 + x ′
2 = 0. Because the

tallyman cannot decide the outcome of position measurement
of the initial ballot modes [see Eqs. (1)], the infinite exponent
in the first term of x̂1 and x̂2 will make x1 and x2 completely
unpredictable, and the information of individual votes will be
concealed. In short, we can decide whether the two voters
agree by examining whether the classical positions satisfy
x ′

1 − x ′
2 = 0 or x ′

1 + x ′
2 = 0.

Admittedly, the two above conditions can be simultane-
ously satisfied. That is when x ′

1 = x ′
2 = 0. However, when

r → ∞, the possibility occurs that x ′
1 = x ′

2 = 0 is zero, and
thus will not worry us. What matters is when r is a large
but finite value. Under this condition, an error of e−r/

√
2

should be considered when the tallyman makes the decision.
Therefore, the deciding condition must be changed to x ′

1 −
x ′

2 = 0 ± e−r/
√

2 and x ′
1 + x ′

2 = 0 ± e−r/
√

2. In addition, the
possibility that x ′

1 and x ′
2 satisfy both conditions is no longer

zero. Another similar procedure may solve this problem.
An alternative scheme, which simply changes the position

measurements by the tallyman into momentum measurements,
also works. When r → ∞, the tallyman only has to examine
whether p′

1 + p′
2 = 0, which implies that two votes are the

same, or p′
1 − p′

2 = 0, which implies that two votes are
different.

B. Anonymous survey

In preceding protocol, the restriction exists that the answer
is binary-valued. In many cases, however, the answer to a
question is an integer, or more generally, a real number. The
goal of an anonymous survey is to find the voter’s opinion
about such a question. An anonymous survey satisfies rules
(R1)–(R3) but not rule (R4).

Suppose n people take part in a quantum anonymous survey.
Again we employ continuous-variable EPR states in Eqs. (1) in
our scheme. Instead of rotation operation, we take advantage
of a displacement operation defined in this survey as

D̂k(α,β) :

{
x̂k → x̂k + α,

p̂k → p̂k + β.
(2)

The subscript k means the operation on mode k; α and β can
be arbitrary real numbers.

In this protocol, the tallyman keeps one mode (mode 1)
to himself and sends the other mode (mode 2) to the voters.
Voters can only apply operations on mode 2. Assume the value
of voter i is vi , voter i can register the vote by applying
an D̂2(vi,0) operation on mode 2. Therefore, we get the
relationship x̂

(i)
2 = x̂

(i−1)
2 + vi , where x̂

(i)
2 is mode 2 after the

ith voter has registered. After all n people have cast their votes,
mode 2 is expressed as

x̂
(n)
2 = 1√

2
e+r x̂

(0)
1 − 1√

2
e−r x̂

(0)
2 +

n∑
i=1

vi,

(3)

p̂
(n)
2 = 1√

2
e−r p̂

(0)
1 − 1√

2
e+r p̂

(0)
2 .

Then mode 2 is sent back to the tallyman, who performs
position measurements on both modes 1 and 2. By calculating
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the difference between the classical outcomes x1 and x
(n)
2 ,

the tallyman can gain information about the sum of all voters’
answers to the survey

∑n
i=1 vi , with an error of e−r/

√
2. Under

the condition of r → ∞, we can get the exact result of the
survey.

III. QUANTUM ANONYMOUS VOTING EXTENSION AND
CHEATING DEFENSE

In this section we will introduce voting protocols as an
extension of the basic schemes in Sec. II. For general voting, it
involves n voters, whose votes can only be one of the m given
choices (candidates). But for both of the two basic schemes, the
disadvantages are evident. The comparative ballot is feasible
only for two voters. If n voters participate in the voting, the
ballot state must be expanded to an n-partite GHZ state, which
is hard to prepare. A greater difficulty is that the measurement
can only imply the individual votes, rather than the desired
collective results. In contrast, an anonymous survey has neither
problem: we only need easily prepared m couples of EPR
states, since the choice number m is much smaller than the
number of voters n (especially in a nationwide election);
the choice by each voter will be cast on the same mode, so
the measurement results will be the sum of all voters. The
tallyman can only get a collective result so he cannot get
personal information. The voter can just access one part of
the EPR state, so voters cannot know other voters’ situations.
However, a disadvantage needs to be noted: in the extension of
an anonymous survey, cheating by voting more than one vote
must be prohibited.

In the rest of this section, we will introduce two protocols:
a simpler binary-valued ballot, which has only two candidates,
and a more complex multivalued ballot, which we will discuss
for the condition of m candidates. With regard to cheating,
we do not consider the situation in which the voters want to
destroy the ballot. We only consider that the ballot is effective
according to our rules, i.e., the voter should not be found in
the cheating process.

A. Binary-valued ballot

The binary-valued ballot requires the vote to be a binary
digit rather than a real number. Such a ballot is useful in
a democratic election with only two candidates. Each voter
can make a vote for one candidate, and voters have the right
to decline to vote (which is a specific case of multivalued
ballot). Without loss of generality, a binary-valued ballot can
be simplified to a “yes” or “no” vote.

Anonymous surveys can be used for a binary-valued ballot:
voters can cast a unit value v0 to vote yes, or do nothing (or
cast a zero value) to vote no. After all n voters have completed
their operation, the tallyman measures the total displacement
which indicates the number of yes votes. The number of no
votes can be calculated from the number of yes votes and the
number of voters. But an anonymous survey cannot prevent
voters from casting more than one vote. A voter may cheat by
casting m × v0 to vote yes m times.

To defend against this kind of cheating, the protocol must
be further developed. Since the above problem occurs when we
only measure yes votes but do not detect the no votes directly,

FIG. 1. Two-valued ballot process with two couples of EPR states.

a scheme (Fig. 1) that records both kinds of votes will solve
the problem.

In this protocol, we employ as our ballot states two couples
of EPR states:

x̂1 = 1√
2
e+r x̂

(0)
1 + 1√

2
e−r x̂

(0)
2 ,

p̂1 = 1√
2
e−r p̂

(0)
1 + 1√

2
e+r p̂

(0)
2 ,

(4)

x̂2 = 1√
2
e+r x̂

(0)
1 − 1√

2
e−r x̂

(0)
2 ,

p̂2 = 1√
2
e−r p̂

(0)
1 − 1√

2
e+r p̂

(0)
2 ,

x̂3 = 1√
2
e+r x̂

(0)
3 + 1√

2
e−r x̂

(0)
4 ,

p̂3 = 1√
2
e−r p̂

(0)
3 + 1√

2
e+r p̂

(0)
4 ,

(5)

x̂4 = 1√
2
e+r x̂

(0)
3 − 1√

2
e−r x̂

(0)
4 ,

p̂4 = 1√
2
e−r p̂

(0)
3 − 1√

2
e+r p̂

(0)
4 .

These two couples of EPR states are eigenstates of total
momenta p1 + p2 = 0 and p3 + p4 = 0 with relative positions
x1 − x2 = 0 and x3 − x4 = 0 when r → ∞. The tallyman
keeps modes 1, 3 and sends modes 2, 4 to the voters. Voters
cast a yes vote by applying D̂2(v0,0) operation and a no vote
by the D̂4(v0,0) operation, where v0 is the unit value of a vote.
After all n voters have completed, the tallyman collects modes
2 and 4, x̂

(n)
2 and x̂

(n)
4 . Then he measures the position of all

four modes and reduces them to the classical result x1, x
(n)
2 ,

x3, and x
(n)
4 , then he calculates the yes and no votes. Under

the condition of r → ∞, the number of each kind of vote is
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expressed as

nyes = x
(n)
2 − x1

v0
, nno = x

(n)
4 − x3

v0
. (6)

The sum of two numbers should be equal to the number
of voters, i.e., nyes + nno = n. If the result does not satisfy
the relationship, someone must have cheated. Also, when r

in Eqs. (6) is a finite number, an error of e−r/
√

2 will be
introduced to the identical relationship among x1, x2 and x3,
x4. Therefore, Eqs. (6) are transformed to

nyes = x
(n)
2 − x1

v0
± e−r

√
2v0

, nno = x
(n)
4 − x3

v0
± e−r

√
2v0

.

(7)

Since the ballot result is required to be deterministic and
unambiguous, the amount of error e−r/

√
2v0 should be

controlled to less than 1
2 . Thus, a restriction is set to v0:

v0 >
√

2e−r . Because of inaccurate measurement and the
introduced error, the numbers nno or nyes may not be integers.
We round them to the nearest whole number and then consider
them as before. If nno + nyes �= n, then voter cheating has
occurred.

However, voters can still cheat in this scheme. Suppose
voter i wants to vote two yes votes, he can apply D̂2(2v0,0)
on mode 2. At the same time, he can also apply D̂4(−v0,0)
on mode 4 because a voter has access to both modes 2 and
4. Even if there are some restrictions to prevent them from
operating on both modes, he can still connive with another
voter j . If voter i operates D̂2(3v0,0) on mode 2 and voter j

operates D̂4(−v0,0) on mode 4, then two voters can vote yes
three times and at the same time reduce the no votes by one.
To prevent this kind of cheating, we have a further developed
scheme.

Improvement method. When a voter votes, he makes a more
complicated displacement on the vote mode (modes 2 and 4).
We bring in a new operator defined as

D̂0k(α,β) = D̂k(eα,eβ ) :

{
x̂k → x̂k + eα,

p̂k → p̂k + eβ.
(8)

The voter can only adjust the value of α or β to vote. When a
voter k makes a yes or no vote, modes 2 and 4 become

x
(k)
2 = D̂02(vk,0)x(k−1)

2 = x
(k−1)
2 + evk

(9)
x

(k)
4 = D̂04(vk,0)x(k−1)

4 = x
(k−1)
4 + evk .

Here vk is dependent on the voter; and for one vote, vi should
be a constant v0. After all voters have voted, modes 2 and 4
become

x̂
(n)
2 = 1√

2
e+r x̂

(0)
1 − 1√

2
e−r x̂

(0)
2 +

n∑
i=1

evi ,

p̂
(n)
2 = 1√

2
e−r p̂

(0)
1 − 1√

2
e+r p̂

(0)
2 ,

(10)

x̂
(n)
4 = 1√

2
e+r x̂

(0)
1 − 1√

2
e−r x̂

(0)
2 +

n∑
i=1

evi ,

p̂
(n)
4 = 1√

2
e−r p̂

(0)
1 − 1√

2
e+r p̂

(0)
2 .

Here vi is the ith vote. We suppose r → ∞. And the number
of yes and no votes can be expressed as

nyes = x
(n)
2 − x1

ev0
, nno = x

(n)
4 − x3

ev0
. (11)

If every voter voted and no one cheated, the number of voters
should equal the sum of the number of yes and no votes (n =
nyes + nno). The new introduced operation is to stop voters
from casting negative votes.

First we consider the case that all the voters have voted and
discuss if our design can detect all the cheating. When just a
single voter cheated, for example, the voter voted D̂0(2i)(3v0,0)
or D̂0(2i)(−v0,0) (i = 1, 2). This kind of cheating can be
easily detected by examining n = nyes + nno. For the operation
D̂0(2i)(v0 + ln2,0), there would be two votes. It also can be
detected by examining n = nyes + nno. The cheating by more
than one voter can be detected in a similar way.

Second there are voters making no vote. If a voter makes no
vote but another voter votes twice, the detecting system could
not find this kind of cheating. However, if we think of making
a no vote as a third choice, this cheating can be found. It is the
multivalued ballot and will be discussed below. In conclusion,
if (n = nyes + nno), there was no cheating; otherwise, some
one cheated.

Also, when r in Eqs. (11) is a finite number, an error of
e−r/

√
2 will be introduced to the equal relationship among x1,

x2 and x3, x4. Therefore, Eqs. (11) are changed to

nyes = x
(n)
2 − x1

ev0
± e−r

√
2ev0

, nno = x
(n)
4 − x3

ev0
± e−r

√
2ev0

.

(12)

Considering that the result should be deterministic and unam-
biguous, the amount of error e−r/

√
2ev0 should be controlled

to less than 1
2 . Thus, a restriction is set to v0: v0 > ln(

√
2e−r ).

The improved method also has the problem that the number
nno or nyes may not be an integer. We round it to the nearest
whole number and then consider it as before. If nno + nyes �= n

there is voter cheating. But it is possible to make a wrong
judgment too, with each voter making one vote exactly, but
nno + nyes �= n. To reduce this kind of mistake we should
improve the measurement accuracy.

B. Multivalued ballot

The difference between binary-valued and multivalued
ballots lies in the fact that the first one has two choices
while the other has m (m > 2) choices. Still, there are n

voters participating in the ballot. This time we also need
a ballot agency to assist voting. Considering there are m

choices for each voter, we employ m couples of EPR states,
with an eigenstate of total momenta p2(i+1) + p2i+1 → 0 with
relative positions x2(i+1) − x2i+1 → 0 (i = 0,1,2, . . . ,m − 1)
when r → ∞ for every pair of modes. In the voting process
(Fig. 2), the tallyman keeps modes (2i + 1) and the rest of
the m modes, mode (2i + 2), are sent to the ballot agency,
where the voters cast their votes. We implement the improved
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FIG. 2. m-valued ballot process with m couples of EPR states.

displacement operation in this protocol. Again, the voters
are required to submit m position modes for all m choices.
To vote for the kth choice, the voter would make an ev0

displacement on the position of the 2kth mode. The j th voter
wants to make a vote on the kth mode, then x

j

k = D0k(vj )xj−1
k

[D0k(v) = D0k(v,0) = Dk(ev,0)]. Like the two-valued ballot,
we have two situations.

First, all voters have voted. After all voters have finished
the voting, we could get the number of each candidate’s votes:

n2 = x
(n)
2 − x1

ev0
,

n4 = x
(n)
4 − x3

ev0
,

(13)
...

n2m = x
(n)
2m − x2m−1

ev0
.

Then we can judge whether there are voters cheating by
comparing the number of votes and the number of voters.
If

∑m
i=1 n2i = n, there is no cheating, otherwise someone has

cheated in the voting.
Second, there is the case of a voter making no vote. If we

know that not every voter has used his/her vote, we cannot
examine cheating by the method above. But we could set the
option of making a no vote as the (m + 1)th choice. Then we
could detect cheating and also find the number of voters who
have given up voting.

When r is a large but finite value, an error of e−r/
√

2 should
be considered when the tallyman makes the decision, as for
the two-valued ballot. And the situation in which the number
nno or nyes may not be an integer should be considered too.

We also think about the how to make our proposal become
reality and we give a basic experimental graph of a ballot in
Fig. 3. The figure includes three parts: entanglement source,
voting process, and detecting system. EPR states were sent

FIG. 3. Experimental setup for ballot. OPO: optical parametric
oscillator, BS: 50:50 beam splitter, AM: amplitude modulator, and
PM: phase modulator.

to the voting part and detecting part separately. In the voting
process voters make a displacement on the amplitude or phase
to vote. And the tallyman compares the two parts of EPR states
to get the voting result in the detecting part.

IV. CONCLUSIONS

In the paper we discuss two-valued and multivalued ballots.
Entangled state of continuous variables was used as the
information carrier to ensure the privacy and anonymity of each
voter. Part of the entangled state was sent to tallyman and the
other was sent to the ballot agency where voters can vote. After
all votes have been cast, the tallyman collects the collective
data and calculates the number of the votes. For the quality
of entanglement the voters are unable to gain information of
others and the tallyman just knows the collective quantity
of votes. We introduce the special operation D0k(α,β) to stop
voters from casting multiple votes. With the new operation,
voters cannot make negative votes, and thus are unable to
cheat without being discovered.

We also considered some other securities, which we will
detect at the beginning of the ballot if the system works well.
We detect the entanglement source randomly, then we decide
if we choose the rest of the source as m couples of EPR states.
In the case of a dishonest tallyman, the tallyman could just
give some data arbitrarily without considering the real data.
So the tallyman should perform all the operations under public
surveillance.
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