
1 23

����	�
����
�
�	�
����
�������
�
������	
���
		
�
�������
�������	
�
��������������
���������� 
��!��"	�����
#$����%���
&�����"������
���


����	�
���
��	�����������	��
��	������
����������������	�	�

����	
���
���	������
����	
���	
���
����	����	




1 23

Your article is protected by copyright and all
rights are held exclusively by Springer Science
+Business Media New York. This e-offprint is
for personal use only and shall not be self-
archived in electronic repositories. If you wish
to self-archive your article, please use the
accepted manuscript version for posting on
your own website. You may further deposit
the accepted manuscript version in any
repository, provided it is only made publicly
available 12 months after official publication
or later and provided acknowledgement is
given to the original source of publication
and a link is inserted to the published article
on Springer's website. The link must be
accompanied by the following text: "The final
publication is available at link.springer.com”.



Quantum Inf Process (2014) 13:1085–1102
DOI 10.1007/s11128-013-0713-7

Quantum secret sharing with continuous variable
graph state

Yadong Wu · Runze Cai · Guangqiang He ·
Jun Zhang

Received: 1 October 2013 / Accepted: 5 December 2013 / Published online: 17 December 2013
© Springer Science+Business Media New York 2013

Abstract In this paper, we study several physically feasible quantum secret sharing
(QSS) schemes using continuous variable graph state (CVGS). Their implementation
protocols are given, and the estimation error formulae are derived. Then, we present a
variety of results on the theory of QSS with CVGS. Any (k, n) threshold protocol of
the three specific schemes satisfying n

2 < k ≤ n, where n denotes the total number of
players and k denotes the minimum number of players who can collaboratively access
the secret, can be implemented by certain weighted CVGS. The quantum secret is
absolutely confidential to any player group with number less than threshold. Besides,
the effect of finite squeezing to these results is properly considered. In the end, the
duality between two specific schemes is investigated.
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1086 Y. Wu et al.

1 Introduction

Quantum cryptography provides an entirely new approach to achieve the communica-
tion security by taking advantage of quantum mechanics principles [1]. Among various
quantum cryptography schemes, quantum secret sharing (QSS) is a general multipar-
tite information security scheme that attracted extensive research interests [2–7]. It
allows a dealer to distribute an encoded secret, which may be a string of bits or qubits,
among a number of players in such a manner that only certain sufficient number of
players can collaboratively reconstruct the secret, and fewer players cannot access any
information about the secret. QSS has its origin in classical information theory. The
first QSS scheme was given in [2] utilizing GHZ states. Reference [3] studied the the-
ory of threshold schemes to share quantum secrets. Reference [4] further investigated
the theory of QSS, e.g., schemes with general access structures, and sharing classical
secrets using quantum states.

On the other hand, graph state [8] has been extensively studied in applications, such
as quantum error correction [9], entanglement purification [10], entanglement mea-
surement [8], and Bell inequality [11]. It is a special type of multi-particle entangled
state that can be represented by a mathematical graph, where each vertex denotes a
qubit, and each edge denotes an Ising interaction.

In recent years, QSS with graph state was introduced in [5] to treat three kinds of
threshold QSS schemes in a unified graph state approach and to propose embedded
protocols in large graph states. Reference [6] generalized the results to prime dimen-
sions, and Ref. [7] investigated non-threshold schemes in the graph state formalism.

All these results are based on the discrete variable formalism. However, any discrete
variable quantum communication protocol requires the generation and detection of
single photon, which is difficult to implement in practical experiments. The essential
steps in quantum communication, i.e., preparation, modulation, and measurement,
can be efficiently implemented in quantum optics utilizing the continuous variable
quadratures of the quantized electromagnetic fields [22]. For example, an entangled
state can be prepared by squeezed lights and linear optics, and the shift amount in
the quadrature phase space can be measured by a homodyne detection. Experimental
demonstrations of QSS with continuous variables were reported in Refs. [12,13].

Thus, we are interested in the implementation of QSS using continuous variable
graph state (CVGS). CVGS was first introduced in [14] as the Gaussian analogue of
discrete variable graph state. It is a multi-particle entangled quantum state that can be
associated with a mathematical graph, where each vertex denotes a qumode and each
edge denotes a quantum non-demolition coupling between two qumodes. It has the
nice property that any local Gaussian operation on a CVGS can be associated with a
geometric transformation on its graph representation [15]. CVGS has been shown to be
useful in universal quantum computation [16,17] and blind quantum computation [18].
In addition, CVGS also finds applications in quantum communications, e.g., Ref. [19]
proposed a protocol to realize quantum teleportation between two parties.

In this paper, we study the implementations and properties of four QSS schemes with
CVGS. According to secret and communication channel types, we can differentiate
eight QSS schemes. Among all these schemes, we are interested in four of them,
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Quantum secret sharing with continuous variable graph state 1087

because the other four are either physically infeasible or insecure. These schemes
extend the works in [5,6] into the CVGS domain.

For each QSS scheme using CVGS, we design an implementation protocol for the
dealer and players to follow so that the players may collaborate to estimate the secret.
The mean value and variance of the estimation error are calculated explicitly. Based
on these analytic formulae, we can derive the conditions for unbiased estimation,
which means that the difference between the expectation of the estimator and the real
parameter being estimated is zero. Furthermore, the parameters in the implementation
protocol can be tuned to minimize the error variance, namely, the variance of the
unbiased estimator. In the extremal case of infinite squeezing, it is shown that the
condition that a set of players perfectly estimate the secret can be transformed to the
consistency of a set of linear equations. By perfectly estimating the secret, we mean
that the players obtain a zero-variance unbiased estimator for the secret.

Then, we focus on the investigation of threshold schemes. In QSS, a (k, n) threshold
protocol refers to the case when k players or more can reconstruct the secret collab-
oratively, and any set of fewer than k players cannot get any information about the
secret. For continuous variable case, we would like to explain threshold protocols in
an equivalent way: Any k or more players can estimate the secret perfectly, and any set
of fewer than k players cannot estimate the secret within a finite error bound. We show
that for three schemes, an arbitrary (k, n) threshold protocol with n

2 < k ≤ n can be
implemented using a weighted CVGS prepared with infinitely squeezed qumodes. For
two schemes, these protocols cover all the physically feasible cases, and we also reveal
the duality between two schemes. An interesting observation is that for the scheme
with quantum secret, private distribution channel, and quantum player–player chan-
nel, the threshold protocol for two noncooperative player groups is exclusive, meaning
that if one group can perfectly estimate the secret qumode, the other cannot estimate
either quadrature of the secret qumode within a finite error bound. The security of the
quantum secret is thus guaranteed. However, the definition of threshold scheme works
only in the ideal case of infinite squeezing. In experiments, we utilize finite squeezed
lights to prepare CVGSs. So, we analyze the effect of finite squeezing to the threshold
schemes.

This paper is organized as follows. Section 2 provides a brief introduction on QSS
schemes and CVGS. Three QSS schemes with CVGS are investigated in Sects. 3, 4,
and 5, respectively. We conclude the paper in Sect. 6.

2 Background

In this section, we give a brief introduction of QSS schemes and CVGS.
In a QSS protocol, there are one dealer and n players as illustrated in Fig. 1. The

dealer has a secret that is encoded into either a string of real numbers or qumodes.
We assume that the string is shared one by one, and at a time, one real number or
one qumode is shared. In each round, the dealer encodes the number or qumode into
a prepared quantum state and subsequently distributes it to all the players through
either private or public channels. With this quantum state under disposal, a group
of players can either apply local operations to their own states and then exchange
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1088 Y. Wu et al.

Fig. 1 QSS (k, n) threshold protocol

classical information, or take joint operations to their states. Based on the information
circulated around, the task for these players is to reconstruct the secret.

We can classify QSS into eight schemes according to their secret type (classical
or quantum), dealer–player distribution channel (private or public), and player–player
communication channel (classical or quantum). Acronyms can be used to denote these
eight schemes in the following way: The first “C” or “Q” denotes the secret type;
“Pvt” or “Pub” denotes the dealer–player distribution channel; the second “C” or
“Q” denotes the player–player communication channel; each scheme is characterized
by the combination of these three acronyms in this order. Among all these eight
schemes, QPubC and QPvtC are physically infeasible because it is impossible to
recover unknown quantum information from classical information. Moreover, QPubQ
and CPubQ are insecure because the eavesdropper can disguise his/her identity to
modify the information on public channel. Therefore, we will investigate only the
four schemes in Table 1:

CPvtC: classical secret sharing with private quantum channels between the dealer
and the players, and classical channels connect each pair of players;

QPvtQ: quantum secret sharing with private quantum channels between the dealer
and the players, and quantum channels connect each pair of players;

CPubC: classical secret sharing with public quantum channels between the dealer and
the players, and classical channels connect each pair of players;

CPvtQ: classical secret sharing with private quantum channels between the dealer
and the players, and quantum channels connect each pair of players.

Among all these four schemes, CPvtC has no clear advantages over the classical
secret sharing—it just use the CVGS formalism to solve a classical information prob-
lem. On the other hand, CPubC and CPvtQ schemes both share the classical secret,
but they also take advantage of the quantum features. Specifically, CPubC scheme can
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Quantum secret sharing with continuous variable graph state 1089

Table 1 Feasible QSS schemes Secret type Dealer–Player
channel

Player–Player
channel

CPvtC Classical Private Classical

QPvtQ Quantum Private Quantum

CPubC Classical Public Classical

CPvtQ Classical Private Quantum

protect the classical secret from eavesdropping, and CPvtQ scheme can double the
efficiency of encoding. Different from these three schemes, QPvtQ is a pure quantum
scheme parallel to classical secret sharing.

In particular, we are interested in (k, n) threshold protocols, which correspond to
the case when it requires at least k players to estimate the secret perfectly, and any set
with less than k players cannot estimate the secret within a finite error bound. This
procedure is shown in Fig. 1.

Furthermore, we will use CVGS to implement QSS schemes. A CVGS is an entan-
gled multi-qumode state that can be represented by an undirected graph. Denote the
adjacency matrix of this graph as G, whose element Gi j represents the interaction
gain of the coupling between qumode i and j . If Gi j takes only binary values 0 or 1,
it is an unweighted CVGS; otherwise, it is a weighted CVGS.

In a QSS scheme, the dealer needs to prepare a CVGS and then to encode the
secret into that CVGS. At the beginning, the dealer has n vacuum states each with the
position X (0)

i and the momentum P(0)
i , where both X (0)

i and P(0)
i are random variables

with standard Gaussian distribution. The dealer then squeezes the momentum and at
the same time amplifies the position of each qumode, obtaining squeezed vacuum
states:

Pj = e−r j P(0)
j , X j = er j X (0)

j , (1)

Here, r j is the squeezing parameter for qumode j . Juxtapose X j ’s and Pj ’s in a vector
form:

v(n) =
[
X1 . . . Xn P1 . . . Pn

]T
. (2)

where the subscript (n) indicates the number of the qumodes, and the superscript T
denotes the transpose of the vector. Now, apply a quantum non-demolition (QND)
coupling with interaction gain Gi j to the pair (i, j) [14]. This establishes a connection
between qumode i and j in the graph, and the resulting quadratures are (Xi , Pi +
Gi j X j ) and (X j , Pj + Gi j Xi ), respectively. After a series of such QND coupling
operations, the final quadratures can be written as

X G
j = X j , PG

j = Pj +
n∑

l=1

G jl Xl . (3)

Letting
vG
(n) =

[
X G

1 . . . X G
n PG

1 . . . PG
n

]T
.
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1090 Y. Wu et al.

We can rewrite Eq. (3) in a compact form as

vG
(n) =

[
I 0

G(n) I

]
v(n), (4)

where G(n) is the adjacency matrix of the n-qumode graph state.
In the next three sections, we will investigate the implementations of the CPvtC,

QPvtQ, and CPubC schemes in Table 1. We point out that the CPvtQ scheme can
be implemented by super-dense coding [20] and is indeed a quantum data hiding
scheme [21]. Since the methodology is similar, we will focus on the first three. For
simplicity, we set h̄ = 1 throughout this paper.

3 Case 1: CPvtC scheme

In this section, we study the CPvtC scheme, in which the dealer encodes a clas-
sical secret into a CVGS and then distributes the qumodes to the players through
private channels, and finally, the players exchange information via classical channels
so as to reconstruct the secret. We will derive the condition to perfectly estimate the
secret under infinite squeezing, discuss the implementation of a (k, n) CPvtC threshold
scheme on CVGS, and finally discuss the effect of finite squeezing.

Assume that the classical secret the dealer holds is a real number γ . The dealer
starts from encoding the secret into a CVGS by applying a momentum displacement
operation Z(c jγ ) = eic j γ x̂ [17] to qumode j with quadratures (X G

j , PG
j ), where c j ,

γ are real numbers and x̂ is the position operator. The momentum of qumode j is
shifted to PG

j + c jγ . Let c = [ c1 . . . cn]T. Then, the shifted momenta for all the
qumodes can be written as a vector cγ . The dealer distributes qumode j to player
j and publishes the vector c to all the players. Now, player j has the quadratures
(X G

j , PG
j + c jγ ) under disposal.

To recover the secret, player j can take the following actions:

1. Let
P D

j = PG
j + c jγ . (5)

Apply the operator exp
{
−i β j

2α j
(P̂ D

j )2
}

to the quadratures (X j , P D
j ) so that the

new quadratures are
(

X j + β j
α j

P D
j , P D

j

)
.

2. Measure the position to get M
(

X j + β j
α j

P D
j

)
, where M(·) is a measurement

operation that results in a random variable.
3. Scale the measurement result by α j and obtain

µ j = α jM
(

X j + β j

α j
P D

j

)

= M(α j X j + β j P D
j ).

(6)

The last equality is because M( · ) is a linear operation.
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Quantum secret sharing with continuous variable graph state 1091

The players can then exchange their µ j by classical communications. We now show
that with these µ j , each player can use the sum of µ j to estimate the secret γ . From
Eqs. (2)–(6), the estimation error e can be calculated as

e =
n∑

j=1

µ j − γ

= M
([

aT | bT
]([

I 0
G(n) I

]
v(n) +

[
0
c

]
γ

))
− γ

= M
([

aT + bTG(n) | bT
]
v(n)

)
+ (bTc − 1)γ , (7)

where a = [ α1 . . . αn]T, b = [ β1 . . . βn]T and 0 = [ 0 . . . 0 ]T.
The mean value of the estimation error is

E e = E M
([

aT + bTG(n) | bT
]
v(n)

)
+

(
bTc − 1

)
γ .

Since E M(X j ) = E M(Pj ) = 0, we have E M
([

aT + bTG(n) | bT]
v(n)

)
= 0.

Hence,

E e = (bTc − 1)γ .

To ensure an unbiased estimation, it is required that

bTc = 1. (8)

The variance of the estimation error can be obtained after some algebraic derivations
as

Var(e) = ‖(aT + bTG(n))R(n)‖2 + ‖bT R−1
(n)‖2, (9)

where R(n) = diag{er1 , . . . , ern }, and ‖ · ‖ is the Euclidean norm.
To enhance the estimation precision, we want to reduce the variance. However,

it is easy to see that under constraint (8), the variance (9) can never achieve zero
for any finite choices of parameters. Therefore, the secret can be perfectly estimated
only if some parameters assume values at infinity. One choice of parameters is to let
‖c‖ → ∞ and ‖a‖, ‖b‖ → 0, which is physically meaningless. Another method is
to apply infinite squeezing, i.e., letting the squeezing parameters r j → ∞ and

aT + bTG(n) = 0T. (10)

Combining Eqs. (8) and (10) yields that

[
aT | bT

] [
I 0

G(n) c

]
=

[
0T | 1

]
. (11)
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1092 Y. Wu et al.

Eq. (11) is a condition that guarantees n players to get the secret perfectly under infinite
squeezing.

Now, consider the case when there are only k collaborating players where k < n.
To simplify the notation, we use AJ,K to denote a matrix obtained by taking rows
with indices in J and columns in K from a matrix A, where J, K are subsets of
N = {1, . . . , n}. For the case of a vector, we can similarly define vJ . Removing the
rows and columns corresponding to these players from Eq. (11), we obtain

[
aT

J bT
J

] [
IJ,N 0
G J,N cJ

]
=

[
0 · · · 0 1

]
, (12)

where J = { j1, . . . , jk}. Equation (12) is a sufficient and necessary condition for k
players from a set of n players to recover the secret perfectly under infinite squeezing.

We show that by using weighted CVGS, any QSS threshold protocol of CPvtC
scheme with (k, n), where k ≤ n < 2k, can be implemented. This demonstrates that
CVGS is a useful physical resource to QSS protocols. This result is presented in the
following Theorem.

Theorem 1 For arbitrary k, n satisfying n
2 < k ≤ n, a (k, n) threshold protocol of

CPvtC scheme can be implemented on a weighted CVGS with infinite squeezing.

To keep the flow of the paper, the proof is given in “Appendix 7.1”.
This theorem depends on the assumption of infinite squeezing. But in practical

experiments, infinitely squeezed light is inaccessible. So, we must analyze the effect
of finite squeezing. We want to show that Eq. (12) is still an equivalent condition for a
set of players to access the secret in the finite squeezing case. To see why, we suppose
the squeezing parameters are such that ri = r for any i in {1, . . . , n}. If Eq. (12) is
true, a and b can be determined by Eq. (12). Then, the error variance is

Var(e) =
∑

j∈J

b2
j e

−2r , (13)

which does not achieve the minimum, but is close to the minimum for large r . If
Eq. (12) cannot be satisfied, the error variance of any unbiased estimator must include
the term (a j +

∑
l bl Gl j )

2e2r j , where a j +
∑

l bl Gl j '= 0. If ‖c‖ is bounded, this term
will be quite large, which makes the error variance big. So, if the error introduced by
the finite squeezing is within the tolerance, we can take the protocol as a threshold
protocol, and Eq. (12) is still an equivalent condition to decide whether a set of players
can access the secret. Thus, Theorem 1 is still true for finite squeezing case.

4 Case 2: QPvtQ scheme

In this section, we discuss the QPvtQ scheme, in which the dealer has a quantum
secret, the qumodes encoding the secret are distributed through private channels, and
the players share their information by quantum communication channels. We show that
any (k, n) threshold protocol of QPvtQ scheme can be implemented by a weighted
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Quantum secret sharing with continuous variable graph state 1093

CVGS. Moreover, if a set of players can perfectly estimate the secret qumode, the
remaining players cannot obtain any information about the secret qumode. The effect
of finite squeezing will also be considered.

In a QPvtQ scheme, the dealer has a secret qumode (X S, PS). At the beginning,
the dealer prepares an (n + 1)-mode CVGS and keeps the (n + 1)-th qumode with
quadratures (X G

n+1, PG
n+1) for later use. The dealer distributes the other n qumodes to

the n players. Now, the dealer performs a Bell measurement as follows. First, combine
the (n+1)-th qumode with (X S, PS) to yield two new qumodes (Xu, Pu) and (Xv, Pv),
where

Xu = X G
n+1 + X S√

2
, Pu = PG

n+1 + PS√
2

Xv = X G
n+1 − X S√

2
, Pv = PG

n+1 − PS√
2

. (14)

Second, take homodyne measurements for Xu and Pv . The measurement results
M(Xu) and M(Pv) are two Gaussian random variables.

The dealer publishes these two measurement results to all the players. If any set
of players can construct the qumode (−X G

n+1, PG
n+1), they can perfectly estimate the

secret by simply adding the position displacement
√

2M(Xu) and subtracting the
momentum displacement

√
2M(Pv) [22]. This is the idea of continuous variable

quantum teleportation [23].
To construct (−X G

n+1, PG
n+1), the players can take the following steps:

1. Apply a single-mode Gaussian unitary operation and a phase insensitive amplifi-
cation [24] to transform a qumode (X G

j , PG
j ) to (α j X G

j +β j PG
j ,α′

j X G
j +β ′

j PG
j ),

where α j ,β j ,α
′
j , and β ′

j are all real numbers;
2. Pick one qumode from the players’ qumodes and transform it to (

∑n
j=1 α j X G

j +
β j PG

j ,
∑n

j=1 α′
j X G

j +β ′
j PG

j ) by using nonlocal operations such as a controlled-X
operation [25].

From Eq. (4), the position error can be calculated as

ex =
n∑

j=1

(α j X G
j + β j PG

j ) − (−X G
n+1)

=
[
aT 0 bT 0

] [
I 0

G(n+1) I

]
v(n+1)

+[0T
(n) 1 0T

(n+1)]v(n+1)

=
[
[aT 1] + [bT 0]G(n+1) [bT 0]

]
v(n+1), (15)

where a = [α1, . . . ,αn]T, b = [β1, · · · ,βn]T, v(n+1) = [X1, . . . , Xn+1, P1, · · · ,

Pn+1]T, and G(n+1) is an (n+1)×(n+1) adjacency matrix. Similarly, the momentum
error is
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1094 Y. Wu et al.

ep =
n∑

j=1

(α′
j X G

j + β ′
j PG

j ) − PG
n+1

=
[
a′T 0 b′T 0

] [
I 0

G(n+1) I

]
v(n+1)

− [gT
n+1 0T

(n) 1]v(n+1)

=
[ [a′T 0] + [b′T 0]G(n+1) − gT

n+1 [b′T −1] ] v(n+1), (16)

where a′ = [α′
1, . . . ,α

′
n]T, b′ = [β ′

1, . . . ,β
′
n]T, and gT

n+1 is the (n + 1)-th row of the
matrix G(n+1).

By applying local unitary operations, the covariance matrix of the secret qumode
can be diagonalized to

(
Var(X S) 0

0 Var(PS)

)
.

From Eq. (1) in [26], we can get the fidelity of the estimated secret qumode as

F = 2√
δ + ε − √

ε
, (17)

where

δ = (2 Var(X S) + V1)(2 Var(PS) + V2),

ε = (Var(X S) Var(PS) − 1) ×
[(Var(X S) + V1)(Var(PS) + V2) − 1],

V1 =
∥∥∥
[[

aT 1
]

+
[
bT 0

]
G(n+1)

]
R(n+1)

∥∥∥
2

+
∥∥∥
[
bT 0

]
R−1

(n+1)

∥∥∥
2
,

V2 =
∥∥∥
[[

a′T 0
]

+
[
b′T 0

]
G(n+1) − gT

n+1

]
R(n+1)

∥∥∥
2

+
∥∥∥
[
b′T −1

]
R−1

(n+1)

∥∥∥
2
,

R(n+1) = diag{er1 , . . . , ern+1}.

To maximize the fidelity, it is required that V1 = V2 = 0. Figure 2 plots the fidelity
F as a function of V1 and V2 for the case when Var(X S) = 3 and Var(PS) = 1

3 .
Similar to the discussions of CPvtC in Sect. 3, for infinite squeezing, we need the

following conditions to perfectly recover the secret:

[[
aT 1

]
+

[
bT 0

]
G(n+1)

]
= 0T, (18)

[[
a′T 0

]
+

[
b′T 0

]
G(n+1) − gT

n+1

]
= 0T. (19)
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Fig. 2 Fidelity F as a function of V1 and V2 when Var(XS) = 3 and Var(PS) = 1
3

Eqs. (18) and (19) can be transformed to

[
aT | bT

] [
I ′

G ′
(n+1)

]
=

[
0T | −1

]
, (20)

[
a′T | b′T

] [
I ′

G ′
(n+1)

]
= gT

n+1, (21)

where I ′, G ′
(n+1) are n × (n + 1) matrices obtained by deleting the (n + 1)-th row of

the matrices I and G(n+1), respectively.
Our main result on general QPvtQ threshold protocols is presented in the following

theorem.

Theorem 2 Any (k, n) threshold protocol of QPvtQ scheme can be implemented with
a weighted CVGS of infinite squeezing.

The proof is given in “Appendix 7.2”.
We now consider the case when n players are divided into two noncooperative

groups, i.e., they do not exchange any information. It is immediate that these two
groups cannot copy the secret qumode simultaneously because of the quantum no-
cloning theorem. Moreover, we have the following theorem.

Theorem 3 If one group can perfectly estimate the secret qumode, the other group
cannot estimate either quadrature of the quantum secret within a finite error bound,
and thus cannot obtain any information about the secret.

The proof is provided in “Appendix 7.3”.
For a (k, 2k − 1) threshold protocol, since any group with k or more players can

perfectly estimate the secret, from Theorem 3, we know that any group with less than
k players can obtain no information about the quantum secret. This holds true for any
(k, n) threshold protocol, which is obtained from (k, 2k − 1) protocol by picking n
qumodes from 2k − 1 qumodes. For these protocols, we have the following corollary.

123

Author's personal copy



1096 Y. Wu et al.

Corollary 1 Any player group with number less than the threshold k cannot obtain
any information about the quantum secret.

Now, consider the effect of finite squeezing. For simplicity, we assume the
secret quantum state the dealer prepares is a minimum uncertainty state, i.e.,
Var(X S) Var(PS) = 1. We want to show the consistency of Eqs. (20) and (21) is
an equivalent conditions to reconstruct the quantum secret in finite squeezing case.
We still assume the squeezing parameters are all rs. If a, b, a′, b′ can be determined
by Eqs. (20) and (21), then the fidelity of the quantum state players obtained is

F = 2
√(

2 Var(X S) + ∑
j∈J b2

j e
−2r

) (
2 Var(PS) + ∑

j∈J b
′2
j e−2r

) , (22)

which is nearly one as r is large. If Eq. (20) cannot be satisfied, V1 in the denominator
of the fidelity in Eq. (17) will include the term (a j + ∑

l bl Gl j )
2e2r j , which makes

the fidelity nearly zero. Thus, the consistency of Eqs. (20) and (21) is the equivalent
condition to reconstruct the secret qumode. Hence, Theorems 2 and 3 work well in
finite squeezing case.

5 Case 3: CPubC scheme

This section is focused on the CPubC scheme, where the dealer has a classical secret,
the qumodes encoding this secret is distributed through public channels, and the players
collaborate to get the secret by classical communication channels. We will show that
a (k, n) protocol of CPubC scheme exists if and only if a (k, n) protocol of QPvtQ
scheme exists.

To begin with, the dealer prepares an (n +1)-mode graph state, keeps the (n +1)-th
qumode, and distributes the other n qumodes to the n players. Since the qumodes are
distributed through public channels, there exists risk that some eavesdroppers may get
them. To ensure secure classical communications, from the method of CV quantum
key distribution [27–29], the dealer takes a random homodyne measurement at the
(n + 1)-th qumode. Either the position or the momentum is measured, but which
quadrature the dealer measured is unknown to the others. The measurement outcome
is a random key, which the dealer will share with the players.

To get the key, the players randomly estimate either M(X G
n+1) or M(PG

n+1). Same
as the case of CPvtC scheme in Sect. 3, the players take those three steps of Eqs. (5)–
(6). Then, they exchange their results to get

∑n
j=1 M(α j X j + β j PG

j ). If the players
are to estimate X G

n+1, they need to consider the position estimation error

ex = M
([

aT 0 bT 0
] [

I 0
G(n+1) I

]
v(n+1)

)
− M

(
X G

n+1

)

= M
([

[aT −1] + [bT 0]G(n+1) [bT 0]
]
v(n+1)

)
. (23)
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The position estimation error has zero mean, and its variance is given by

Var(ex ) =
∥∥∥
[[

aT −1
]

+
[
bT 0

]
G(n+1)

]
R′

∥∥∥
2

+
∥∥∥
[
bT 0

]
R′−1

∥∥∥
2
. (24)

The variance becomes 0 only when the qumodes are infinitely squeezed, and also

[
aT −1

]
+

[
bT 0

]
G(n+1) = 0T, (25)

which leads to

[
aT | bT

] [
I ′

G ′
(n+1)

]
= [0T | 1], (26)

If the players are to estimate PG
n+1, they need to consider the momentum estimation

error

ep = M
([

a′T 0 b′T 0
] [

I 0
G(n+1) I

]
v(n+1)

)
− M

(
PG

n+1

)

= M
([ [

a′T 0
]
+

[
b′T 0

]
G(n+1) − gT

n+1

[
b′T −1

] ]
v(n+1)

)
, (27)

which also has zero mean with variance given by

Var(ep) =
∥∥∥
[[

a′T 0
]

+
[
b′T 0

]
G ′ − gT

n+1

]
R′

∥∥∥
2

+
∥∥∥
[
b′T −1

]
R′−1

∥∥∥
2
. (28)

Similar to the CPvtC scheme, to minimize the variance, we require both terms in Eq.
(28) to be zero, i.e.,

[
b′T − 1

]
R′−1 = 0,

which implies the qumodes are infinitely squeezed; and

[[
a′T 0

]
+

[
b′T 0

]
G ′ − gT

n+1

]
= 0T, (29)

which can be further simplified to Eq. (30).

[
a′T | b′T

] [
I ′

G ′′

]
= gT

n+1. (30)

To construct a shared key between the dealer and the players, they need to do the
following:
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1. The collaborative players announce the quadrature they estimated.
2. The dealer publishes the quadrature actually measured.
3. If the players’ estimation quadrature matches the dealer’s measurement quadrature,

they keep the estimation result as the shared key; if not, they discard it and try again.

Step 3 is necessary because if the estimation quadrature matches the measurement
quadrature, the players obtain an unbiased estimation of the measurement outcome
M(X G

n+1) with variance Eq. (24), or M(PG
n+1) with variance Eq. (28). Otherwise, the

players get something completely useless. The error in this case will be unbounded, as a
homodyne measurement for the position (or momentum) will collapse the momentum
(or position) into a maximally uncertain state.

The eavesdroppers cannot get any information without changing the qumodes in the
quantum channels, and any disturbance to the qumodes can be detected by comparing
part of the shared keys held by the dealer and the players.

What is worth mentioning is the duality between QPvtQ and CPubC schemes. We
now show that a (k, n) threshold protocol can be implemented on CPubC if and only if
it can be implemented on QPvtQ. We proved that in CPubC scheme, the existence of a
set of players who can perfectly estimate the secret is equivalent to the consistency of
Eqs. (26) and (30), and in QPvtQ scheme, that existence is equivalent to the consistency
of Eqs. (20) and (21). It is clear that Eqs. (21) and (30) are the same, and Eq. (20)
differs from Eq. (26) only by a sign. Thus, the existence of a (k, n) threshold protocol
on CPubC is equivalent to that on QPvtQ. Similar results for the discrete variable
were given in [30]. Furthermore, from Theorem 2, it is clear that a (k, n) threshold
CPubC protocol exists if and only if n

2 < k ≤ n, and all these CPubC protocols can
be implemented using CV weighted graph states. The effect of finite squeezing in the
CPubC scheme is similar to the previous analysis in the Sects. 3 and 4.

6 Conclusion

This paper investigated three QSS schemes with CVGS in details, namely, CPvtC,
QPvtQ, and CPubC. We designed implementation protocols for each scheme and
derived analytic formula for the estimation error. This makes it possible to minimize
the error variance by varying protocol parameters. We showed that a (k, n) threshold
QSS protocol of the three schemes satisfying n

2 < k ≤ n can be implemented by using a
weighted CVGS. These protocols cover all the physically feasible threshold protocols
for QPvtQ and CPubC. Specifically, the perfect estimation for two noncooperative
groups on QPvtQ is exclusive. Finally, the duality between QPvtQ and CPubC schemes
is discussed.

In practical experiments, we have to use finitely squeezed lights to prepare CVGSs.
We have found that in a (k, n) threshold protocol, finite squeezing will bring in the
existence of small error variance in the estimation of k or more players, and the access
of little information about the secret for fewer than k players. Since generally, the
error is small for physically realistic squeezing and the condition to access the secret
remains the same as in the infinite squeezing case, finite squeezing will not repudiate
any of our results. Thus, all the results are physically realistic by utilizing finitely
squeezed lights in experiments.
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7 Appendix

7.1 Proof of Theorem 1

To guarantee all the (k, n) threshold protocols with k ≤ n < 2k can be implemented,
the dealer only need to make sure that they can implement the case when n = 2k − 1.
In (k, 2k −1) threshold protocols, any k players can cooperatively get the secret. Even
if less than k of the 2k − 1 qumodes are removed, any k players holding the reserved
qumodes can still obtain the secret. Hence, by choosing arbitrary n players from the
total 2k − 1 players, a (k, 2k − 1) threshold protocol can be transformed into a (k, n)

protocol. Thus, to prove Theorem 1, we only need to show that any (k, 2k−1) protocol
can be implemented using a weighted CVGS of infinite squeezing.

Suppose that in a communication system with one dealer and 2k − 1 players, a set
of k players collaborate to reveal the secret. Since Eq. (12) is a sufficient and necessary
condition for the k players to perfectly estimate the secret, to guarantee they can get
the secret, it is required that Eq. (12) with n = 2k − 1 has solutions. In Eq. (12), the
2k × 2k matrix

[
IJ,N 0
G J,N cJ

]

maps a 2k-dimensional vector [aT
J bT

J ]T to a 2k-dimensional nonzero vector
[0 . . . 0 1]T, where J = { j1, . . . , jk} and N = {1, . . . , 2k − 1}. If this matrix is
full rank, there exists exactly one solution [aT

J bT
J ]. Since the submatrix IJ,N is always

full rank, we only need to guarantee the submatrix [G J,K cJ ] is full rank, where
K = N \ J . This condition can be satisfied by designing the adjacency matrix G and
the vector c. Here, the backslash denotes the set difference.

To show that it is a (k, 2k − 1) threshold protocol, we also need to prove that any
subset with fewer than k players cannot estimate the secret within a finite error bound.
Indeed, we only need to prove there is no solution to Eq. (12) if k is replaced by k − 1.
In this case, Eq. (12) becomes

[
aT

J ′ bT
J ′

] [
IJ ′,N 0
G J ′,N cJ ′

]
=

[
0 · · · 0 1 ,

]
(31)

where J = { j ′1, . . . , j ′k−1}. Consider the first 2k −1 columns of the matrix in Eq. (31).
The submatrix

[
IJ ′,N
G J ′,N

]
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maps [aT
J ′ bT

J ′ ] to a (2k − 1)-dimensional zero vector. Since the submatrix is full rank,
[aT

J ′ bT
J ′ ] can only be a zero vector, which contradicts the fact that bT

J ′cJ ′ = 1. So,
Eq. (31) has no solutions. Hence, the theorem is proved.

7.2 Proof of Theorem 2

From quantum no-cloning theorem, we know that a (k, n) threshold QPvtQ protocol
must satisfy k ≤ n < 2k. The largest possible value of n is 2k − 1. In this case,[
I ′T | G ′T]T is a 2n × (n +1) matrix. Since there are 2(n − k) zeros in [ aT | bT], only

a 2k × 2k submatrix [(IJ )T (G J,N )T]T needs to be considered in Eqs. (20) and (21).
If this matrix is full rank, both Eqs. (20) and (21) have a unique solution. The matrix
IJ is always full rank; thus, to make [(IJ )T (G J,N )T]T full rank, we need to the k × k
submatrix G J,K to be full rank as well, where K = N \ J .

If for any k players, the corresponding G J,K is full rank; this CVGS can be used
to implement a (k, 2k − 1) threshold QPvtQ protocol. We can always find a proper
weighted CVGS satisfying this condition. If (k, 2k − 1) protocols are obtained, the
dealer can implement any (k, n) protocol by picking n qumodes from a (2k −1)-mode
CVGS and distributing to n players.

7.3 Proof of Theorem 3

Divide n players into two groups: One has k players and the other n − k players. We
need to show that if one group can perfectly estimate the secret qumode (X S, PS),
the other group cannot estimate either X S or PS within a finite error bound. If we can
prove it is impossible that one group perfectly estimates X S when the other group
perfectly estimates PS , the theorem is proved because any nonzero estimation error
must be unbounded under infinite squeezing.

If the group with k players can collaborate to estimate the position distribution of
the secret qumode perfectly, we have

[
aT

J bT
J

] [
IJ,M
G J,M

]
=

[
0T

n −1
]
, (32)

where M = {1, . . . , n + 1}, and J is a k−subset of N = {1, . . . , n}. From Eq. (32),
we obtain

bT
J G J,M\J =

[
0T

n−k −1
]
. (33)

Denote the last column of G J,M\J as v1.
For the other group, if they can collaborate to estimate the momentum distribution

of the secret mode, we get

[
aT

K bT
K

] [
IK ,M
G K ,M

]
= gT

n+1, (34)
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where K = N \ J . We then have

bT
K G K ,P = vT

2 , (35)

where P = M \ K and v2 = (gn+1)P (recall that gn+1 is the last column of G(n+1)).
Hence, vT

2 = [vT
1 0]. Since G J,N =

[
G J,K v1

]
, we can rewrite Eqs. (33) and (35) as

bT
J
[

G J,K v1
]

=
[

0T
n−k −1

]
, (36)

bT
K

[
G K ,J v3

]
=

[
vT

1 0
]
, (37)

where v3 is the last column of G K ,P . From Eq. (37), we have vT
1 = bT

K G K ,J . Substi-
tuting it into Eq. (36), we get

bT
J G J,K [I | bK ] = [0T

n−k − 1],

which is a contradiction. Thus, it is impossible for one group of players to perfectly
estimate the position distribution, and the other to estimate the momentum distribution,
if these two groups do not have any quantum communication.
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