
Vol 16 No 5, May 2007 c© 2007 Chin. Phys. Soc.

1009-1963/2007/16(05)/1364-06 Chinese Physics and IOP Publishing Ltd

Security analysis of continuous-variable

quantum key distribution scheme∗

Zhu Jun(Á d)†, He Guang-Qiang(Û2r), and Zeng Gui-Hua(QBu)

The State Key Laboratory on Fiber-Optic Local Area Networks and Advanced Optical Communication Systems,

Electronic Engineering Department, Shanghai Jiaotong University, Shanghai 200240, China

(Received 26 July 2006; revised manuscript received 27 October 2006)

In this paper security of the quantum key distribution scheme using correlations of continuous variable Einstein–

Podolsky–Rosen (EPR) pairs is investigated. A new approach for calculating the secret information rate ∆I is proposed

by using the Shannon information theory. Employing an available parameter F which is associated with the entanglement

of the EPR pairs, one can detect easily the eavesdropping. Results show that the proposed scheme is secure against

individual beam splitter attack strategy with a proper squeeze parameter.
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1. Introduction

Quantum key distribution (QKD)[1] makes it pos-

sible for two remote parties, Alice and Bob, to agree

on secret information that could later be distilled into

a secret key for encrypting messages. The security of

which is guaranteed by the fundamental laws of quan-

tum mechanics.[2−4] Thus far many discrete variable

(DV) QKD schemes,[1,5] generally based on the phase

or polarization modulation of single photon pulses,

have been proposed. However, besides having very low

communicating rates, these schemes require specifi-

cally advanced devices such as single photon sources

and single photon counters which are very difficult to

fabricate. In contrast, the canonical quantum quadra-

tures of light beams are customarily used in continu-

ous variable (CV) QKD schemes[6−13] to encode in-

formation, which are easier to produce and detect

comparatively. Therefore the CV QKD schemes as-

sociated with the canonical quantum quadratures of

light beams become a more favourable candidate in

the quantum cryptography.

At present, a very important problem in the ac-

tive field of CV QKD schemes is the security analy-

sis of the quantum cryptographic scheme. Although

much researches have been done, the security analy-

sis of the CV QKD schemes is still far from maturity,

especially using Shannon information theory. In this

paper, we study a CV QKD scheme using Einstein–

Podolsky–Rosen (EPR) correlations. Detailed proof

based on Shannon information theory has been given,

which illustrates the security of this scheme against

the individual beam splitter (BS) eavesdropping at-

tack.

This paper is organized as follows. In Section 2,

the scheme is specified so that the analysis about its

security by calculating the secret information rate ∆I

and the entanglement parameter F could be carried on

more conveniently in Section 3. And the conclusions

are drawn in Section 4.

2. Scheme description

For describing clearly our approach for the secu-

rity analysis of the CV QKD scheme, we suggest a

simple QKD scheme by using CV EPR correlations.

The scheme is composed of two independent parties.

Alice, the sender, has to prepare the CV EPR entan-

glement pairs by using a nondegenerate optical para-

metric amplifier (NOPA). Bob, the receiver, has to

randomly select to measure a quadrature of the receiv-

ing signal (see Fig.1). The scheme can be described

by the following steps:

Step 1 Alice prepares a state |ψ0〉 = |0〉1 ⊗ |0〉2,
where the subscripts 1 and 2 denote input modes â1
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and â2 respectively. Let the input modes enter into

the NOPA, a pair of EPR entanglement light beams is

generated with a proper squeezed parameter r. Thus,

the output mode â3 correlates with the output mode

â4, and this correlation increases with large r. The

entanglement degree of the generated two-mode state,

i.e., the state consisting of modes â3 and â4, may be

characterized by using an available parameter F de-

fined as,[14]

F =
〈

[

∆(X1
out1 − k1X

1
out2)

]2
〉

min

×
〈

[

∆(X2
out1 − k2X

2
out2)

]2
〉

min
, (1)

where k1 and k2 are coefficients giving F the minimal

value, X1 and X2 are the canonical quantum quadra-

tures of the light beams, and the subscripts out1 and

out2 refer to the modes â3 and â4.

Fig.1. Schematic representation of the QKD scheme based

on CV EPR correlations. NOPA: nondegenerate optical

parametric amplifier. S(ξ): two-mode squeezing operator

of NOPA. BS: beam splitter. η: the transmission coeffi-

cient of BS. The Arabic numerals denote the modes.

Step 2 Alice calculates the entanglement param-

eter Fa and the corresponding threshold Fth. Then the

mode â4 is sent to Bob, while â3 is preserved by Alice.

Step 3 Alice and Bob prepare random bit strings

a and b respectively, where a = a1a2a3 · · · an, ai ∈
{0, 1}, ∀i, b = b1b2b3 · · · bn, bi ∈ {0, 1}. According

to ai and bi, Alice and Bob choose basis to measure

X1 or X2 respectively. For instance, if ai = 0, Alice

measures X1; otherwise, Alice measures X2.

Step 4 Alice and Bob write down their measure-

ment results and the corresponding time slots, respec-

tively.

Step 5 After the transmission is finished, Al-

ice and Bob compare their random sequences a and b

through a classical channel. The measurement results

are held when ai = bi, and the others are discarded.

When Eve does not exist, the quantum channel is per-

fect and the squeezing parameter of CV EPR pairs is

infinite, the remaining measurement results of both

Alice and Bob would have the same absolute value.

Step 6 Alice tells Bob some of her remaining

measurement results and the corresponding time slots

through the classical channel. Bob then estimates the

parameter Fb by comparing Alice’s measurement re-

sults with his own measurement results with the corre-

sponding time slots. If Fb ≥ Fth, then he goes to Step

1, and restarts the protocol, since Eve gets more infor-

mation than Bob in this situation. Otherwise proceeds

with next step.

Step 7 By employing reconciliation and privacy

amplification, Alice and Bob can distill secure key

from the remaining measurement results.

3. Security analysis

In this section, the security of the proposed

scheme is investigated in details by employing the

Shannon information theory. The secret information

rate defined by[15]

∆I = I(α, β) − I(α, ε) (2)

is a very important parameter for showing the security,

where I(α, β) denotes the mutual information between

Alice and Bob, and I(α, ε) denotes the mutual infor-

mation between Alice and Eve. Generally, if ∆I > 0

the QKD protocol must be secure with the techniques

of reconciliation and privacy amplification. To detect

the eavesdropping, the entanglement parameter F de-

fined in Eq.(1) is available. The condition F ≥ Fth

may be employed to judge the influence of Eve’s dis-

turbance on the quantum channel.

3.1. Secret information rate

With the aim of calculating I(α, β) and I(α, ε),

we first determine the probability distribution of the

quadratures X1 and X2 in all modes as depicted in

Fig.1. Applying a two-mode squeezed operator S(ξ),

we get the output modes, â3 and â4 of the NOPA:

X1
3 = X1

1 cosh(r) +X1
2 sinh(r),

X2
3 = X2

1 cosh(r) −X2
2 sinh(r),

X1
4 = X1

2 cosh(r) +X1
1 sinh(r),

X2
4 = X2

2 cosh(r) −X2
1 sinh(r), (3)

where r = κt is the squeezed parameter. Suppose Eve

eavesdrops on the quantum channel individually by
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using a BS with the transmission coefficient η, then

we have the output modes of the BS

X1
6 =

√
ηX1

5 −
√

1 − ηX1
4 ,

X2
6 =

√
ηX2

5 −
√

1 − ηX2
4 ,

X1
7 =

√
ηX1

4 +
√

1 − ηX1
5 ,

X2
7 =

√
ηX2

4 +
√

1 − ηX2
5 . (4)

Combining Eqs.(3) and (4) we obtain,

X1
6 =

√
ηX1

5 −
√

1 − ηX1
2 cosh(r) −

√

1 − ηX1
1 sinh(r),

X2
6 =

√
ηX2

5 −
√

1 − ηX2
2 cosh(r) +

√

1 − ηX2
1 sinh(r),

X1
7 =

√
ηX1

2 cosh(r) +
√
ηX1

1 sinh(r) +
√

1 − ηX1
5 ,

X2
7 =

√
ηX2

2 cosh(r) −√
ηX2

1 sinh(r) +
√

1 − ηX2
5 . (5)

Since random variables X1
i , X

2
i (i = 1, 2, 5) are independent of each other with the Gaussian distribution

X1
i , X

2
i : N

(

0,
1

4

)

(i = 1, 2, 5) (6)

the random variables X1
i , X

2
i (i = 3, 6, 7) also follow the Gaussian distribution.

According to the Shannon information theory,[16] we can simply calculate the mutual information between

random variables (X1
3 ;X1

6 ), (X2
3 ;X2

6 ), (X1
3 ;X1

7 ) and (X2
3 ;X2

7 ):

I(X1
3 ;X1

6 ) = I(X2
3 ;X2

6 ) =
1

2
log2

{

1 +
4(1 − η) cosh2(r) sinh2(r)

(1 − η) + η[cosh2(r) + sinh2(r)]

}

,

I(X1
3 ;X1

7 ) = I(X2
3 ;X2

7 ) =
1

2
log2

{

1 +
4η cosh2(r) sinh2(r)

η + (1 − η)[cosh2(r) + sinh2(r)]

}

. (7)

Since Alice and Bob randomly choose measurement basis and preserve their measurement only when their bases

are compatible, half of their measurement results are discarded. Hence the actual mutual information between

Alice and Bob is just half of that between (X1
3 ;X1

7 ) and (X2
3 ;X2

7 ), which is

I(α, β) =
1

4
log2

{

1 +
4η cosh2(r) sinh2(r)

η + (1 − η)[cosh2(r) + sinh2(r)]

}

. (8)

Similarly, the actual mutual information between Alice and Eve is

I(α, ε) =
1

4
log2

{

1 +
4(1 − η) cosh2(r) sinh2(r)

(1 − η) + η[cosh2(r) + sinh2(r)]

}

. (9)

Employing Eqs.(2), (8) and (9), one obtains

∆I = I(α, β) − I(α, ε) =
1

4
log2

{

[η(1 + 4M) + (1 − η)N ][(1 − η) + ηN ]

[(1 − η)(1 + 4M) + ηN ][η + (1 − η)N ]

}

, (10)

where

M = cosh2(r) sinh2(r),

N = cosh2(r) + sinh2(r).

To distill a secret final key by employing the tech-

niques of reconciliation and privacy amplification, one

may let ∆I = I(α, β) − I(α, ε) > 0. Since the com-

plexity of Eq.(10), we analyse the security via number

simulations. The relationship between ∆I and η is

plotted in Fig.2.

One may find that ∆I increases with the increase

of η, and ∆I reaches its maximal value with η = 1.

Besides, whatever value r has been given, there is al-

ways the result that ∆I = 0 with η = 0.5. Physically,

this can be explained as follows. Since Eve uses BS to

eavesdrop the quantum channel individually, accord-

ing to Eq.(4), the smaller the transmission coefficient

η of BS is, the more information beam Eve would get
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and the less Bob would get. When η = 0.5, the infor-

mation beam that Eve obtains is as much as that Bob

obtains.

In addition, Fig.2 shows that the absolute value

of ∆I increases with the increase of squeezed param-

eter r. That means we could improve the mutual in-

formation between authorized communicators by con-

summating the EPR entanglement pairs. Particularly,

when r = 0, i.e., the output modes of the NOPA are

mutually independent, we have ∆I ≡ 0. Under this

circumstance, no one can obtain any information.

Fig.2. Secret information rate ∆I versus transmission co-

efficient η with squeezed parameter r = 0, 1, 2.

3.2.Detecting eve

In classical communication, an eavesdropper can

obtain perfect copies of the beams without making any

disturbance. However, in quantum theory, the eaves-

dropping inevitably disturbs the transmitting beam,

which will destroy the correlations between EPR pairs.

In addition, the information got by Eve is limited by

the imperfection in the copies. Thus, Eve’s interven-

tion can be detected by calculating the entanglement

parameter F due to the disturbance. Firstly the en-

tanglement parameters Fa, Fth and Fb are calculated.

Then detailed circumstances are discussed.

Define

δX1
Eve = X1

7 − k1X
1
3 , δX2

Eve = X2
7 + k2X

2
3 . (11)

When η = 0.5 which corresponds to ∆I = 0, combin-

ing Eqs.(4) and (11) we obtain

δX1
Th =

√
2

2
(X1

4 +X1
5 ) − k1X

1
3 ,

δX2
Th =

√
2

2
(X2

4 +X2
5 ) + k2X

2
3 . (12)

When η = 1 which corresponds to no eavesdropping,

from Eqs.(4) and (11) we have

δX1
no−Eve = X1

4 − k1X
1
3 ,

δX2
no−Eve = X2

4 + k2X
2
3 . (13)

According to Eqs.(3) and (13), we have

〈

[∆(δXj

no−Eve)]
2
〉

=
1

4
[cosh(r) − kj sinh(r)]2 +

1

4
[sinh(r) − kj cosh(r)]2 (j = 1, 2). (14)

Equation (14) gives the minimal values of 〈[∆(δX1
no−Eve)]

2〉 and 〈[∆(δX2
no−Eve)]

2〉

〈[∆(δX1
no−Eve)]

2〉min = 〈[∆(δX2
no−Eve)]

2〉min =
1

4 cosh2(r) + 4 sinh2(r)
, (15)

when

k1 = k2 =
2 cosh(r) sinh(r)

cosh2(r) + sinh2(r)
. (16)

Employing Eq.(1) we obtain,

Fa = 〈[∆(δX1
no−Eve)]

2〉min〈[∆(δX2
no−Eve)]

2〉min =
1

16[cosh2(r) + sinh2(r)]2
. (17)

Similarly, Eqs.(3) and (12) give

〈[∆(δXj

Th)]2〉 =
1

4







[√
2

2
cosh(r) − kj sinh(r)

]2

+

[√
2

2
sinh(r) − kj cosh(r)

]2

+ (1 − η)







(j = 1, 2). (18)
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Substituting Eq.(16) into Eq.(18) we have

FTh = 〈[∆(δX1
Th)]2〉〈[∆(δX2

Th)]2〉. (19)

Similarly, combining Eqs.(5) and (11) we get

〈[∆(δXj

Eve)]
2〉 =

1

4

{

[
√
η cosh(r) − kj sinh(r)]2 + [

√
η sinh(r) − kj cosh(r)]

2
+ (1 − η)

}

(j = 1, 2). (20)

Substituting Eq.(16) into Eq.(20) we have

Fb = 〈[∆(δX1
Eve)]

2〉〈[∆(δX2
Eve)]

2〉. (21)

Obviously, there is always Fb ≥ Fa, and the lower

bound of Fb can be reached when η = 1. Also we

have Fb = Fth when η = 0.5.

The relationship between parameter Fb and dis-

turbance coefficient D(D = 1 − η) is plotted in Fig.3.

Fig.3. The entanglement parameter Fb versus distur-

bance coefficient D (D = 1 − η) with squeezed parameter

r = 0, 1, 2. (Fb is drawn in logarithmic scale).

We see that Fb increases rapidly when D in-

creases. Suppose the quantum channel is perfect, we

can deduce as follows. When Fb ≥ Fth, then we have

D ≥ 0.5. Thereby we have to restart the QKD process

since Eve exists and ∆I ≤ 0. When Fa < Fb < Fth,

then we have 0 < D < 0.5. Although Eve exists, we

have no need to re-distribute the key because ∆I > 0

in this situation. When Fb = Fa, then we have D = 0,

which means that Eve does not exist. Consequently

the information shared by Alice and Bob are abso-

lutely secure. Specially, it has no practical meaning

that Fb remains constant when r = 0, because the au-

thorized communicators cannot share any information

as mentioned in Section 3.1.

3.3. The relationship between ∆I and Fb

According to the discussion above, the relation-

ship between secret information rate ∆I and the en-

tanglement parameter Fb is extremely significant. In

principle, the relationship between ∆I and Fb may

be obtained by combining Eqs.(10) and (21). How-

ever, the analytical expression is very complex. There-

fore we illustrate the results by numerical simulations

which are shown in the Fig.4 with a squeezed param-

eter r = 2.

Fig.4. Secret information rate ∆I versus the entangle-

ment parameter Fb with squeezed parameter r = 2.

In Fig.4, Fb increases quickly with the decrease

of ∆I, especially when ∆I ≤ 0. It predicates that

the more information Eve obtain, the easier she would

be detected. For r = 2, ∆Imax = 2.386bit when Fb

reaches its lower bound Fb min = Fa = 8.38 × 10−5,

and ∆I ≤ 0 when Fb ≥ Fth = 0.51. Apparently these

numerical solutions accord with the discussion in Sec-

tion 3.2.

According to the above, one has the following re-

sults. When Fb = Fa, there is no eavesdropping in

the QKD process which is actually an ideal case. In

this case Alice and Bob may generate a secret key

without any classic supplements such as privacy am-

plification. When Fa < Fb < Fth, one may find that

the secret information rate still satisfies ∆I > 0 de-

spite of the eavesdropper’s existence. In this situation,
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Alice and Bob may obtain an secure key by using the

techniques of reconciliation and privacy amplification.

When Fb ≥ Fth, the eavesdropper’s existence leads to

the secret information rate ∆I ≤ 0 and Alice and Bob

cannot obtain a secure key. The security of the QKD

scheme can be guaranteed only by restarting the QKD

process.

4. Conclusion

The security of the QKD scheme using correla-

tions of CV EPR pairs is elaborately investigated by

employing the Shannon information theory. The pro-

posed approach for the security analysis of the CV

QKD may be applied in other kinds of schemes which

use CV. Using this approach the proposed scheme has

been proven to be secure against the individual BS

eavesdropping attack strategy. In addition, an ap-

proach for detecting eavesdropper by using the en-

tanglement parameter F is presented. Physically, the

squeezed parameter r plays important role in the pro-

posed scheme. The larger squeezed parameter r bene-

fits the perfection of the CV EPR entanglement pairs,

subsequently, the higher key distributing rate and the

channel capability.
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