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Abstract Spontaneous four wave mixing in nonlinear waveguide is one of the excellent technique for generating photon

pairs in well-defined guided modes. Here we present a comprehensive study of the frequency characteristic of correlated

photon pairs generated in telecom C-band from a dispersion-engineered silicon wire waveguide. We have demonstrated

that the waveguide configuration, shape of pump pulse, two-photon absorption as well as linear losses have significant

influences on the biphoton spectral characteristics and the amount of frequency entanglement generated. The superior

performance as well as the structural compactness and CMOS compatibility makes the silicon wire waveguide an ideal

integrated platform for the implementation of on-chip quantum technologies.
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1 Introduction

Recent work in quantum information science has pro-
duced a revolution in the understanding of quantum
entanglement.[1] The phenomenon of quantum entangle-
ment whereby distant systems can manifest perfectly cor-
related behavior is now recognized as the key ingredient
in performing tasks, which can not be completed with
classically correlated systems. Photon-pair generation by
spontaneous four wave-mixing (SFWM) has been attract-
ing much attention.[2−5] In optical fibers, it was shown
that such photon pairs can be efficiently generated in
well-defined single fiber modes and conveniently manip-
ulated by linear optical devices.[6−9] However, there is a
drawback with fiber-based entanglement sources, namely
the burdensome broadband spontaneous Raman scatter-
ing (SpRS), which needs to be suppressed by the aid of
auxiliary cooling techniques. Recently, Cui et al.[7−8] used
photonic crystal fiber (PCF) based sources with large fre-
quency detuning between signal and idler photons to get
rid of the contamination of Raman scattering as well as
bridged visible and telecom wavelengths.

In parallel, SFWM in a nano-scale silicon wire waveg-
uide (SWW) based on silicon-on-insulator (SOI) structure
has attracted much attention as a new way to generate en-
tangled photon pairs due to the high intrinsic nonlinearity,
the possibility for dense integration, mature fabrication
methods, low loss and low manufacturing cost.[10−17] In

particular, the deleterious SpRS noises in the SWW can be
effectively eliminated because of the crystalline nature of
silicon material, which leads to significantly lesser broad-
ening of the Raman vibrational modes. The noise can be
further suppressed by selecting signal and idler frequen-
cies that are far from the Raman peak, which is 15.6 THz
from the pump frequency and has a narrow bandwidth
about 100 GHz.[11−12] Such silicon-based photon sources
not only exhibit high pair correlation but also have high
spectral brightness.[13] In addition, in the SFWM process,
the four photons involved in the nonlinear process have
similar frequencies, hence the temporal walkoff between
a pump and a photon pair is negligible. The superior
performance as well as the structural compactness and
CMOS compatibility makes the SWW an ideal integrated
platform for the implementation of on-chip quantum tech-
nologies.

However, the characteristics of frequency correlation
in an SWW have not been studied in detail. Grice et

al.[18] first studied the elimination of spectral correlations
for photon pairs generated from spontaneous parametric
down-conversion by the method of group-velocity match-
ing using a broadband pump pulse. Then Garay–Palmett
et al.[19] extended this method to the case of SFWM by
engineering the group velocities of sideband photons using
PCFs. Cui et al.[8] experimentally demonstrated that be-
sides the intrinsic oscillation of the phase matching func-
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tion, the chirp of the pulsed pump and high-order disper-
sion can also effectively influence the frequency correlation
of photon pairs. Unlike the fiber-based SFWM schemes,
the complete joint spectral intensity (JSI) of SWW can
not be easily measured as the pump frequency lies in the
center. Very recently, it has been demonstrated that the
whole JSI can be measured by the classical stimulated pro-
cess with a fast and reliable quality control procedure.[20]

Hence in this paper, we analyze the spectral properties of
entangled photon pairs generated in an SWW via SFWM.
Our motivation for this work is to study the effects of dis-
persion, waveguide structure, pump pulse and two-photon
absorption, which are relevant in the production of a wide
range of spectral correlation, factorability and anticorre-
lation in the two-photon component of the state. The
specific sources of integrated SWW play a significant role
in quantum information processing applications. Further-
more, by employing the Schmidt number, the degree of
frequency entanglement is studied and it shows a signifi-
cant dependence on the factors mentioned above.

2 Theoretical Model

In the process of SFWM, two pump photons at fre-
quency ωp1 and ωp2 are converted into a pair of energy-
time-entangled signal and idler photons at frequency ωs

and ωi, respectively, moderated by a third-order nonlin-
ear optical material. The special case, in which ωp1 = ωp2,
is interesting because FWM can be initiated with a sin-

gle pump beam. This degenerate case is often useful for
SWW. Although the vectorial four-photon scattering are
also allowed in the birefringent SWW, we focus on the case
in which a single pump pulse with a central wavelength
of 1.55 µm polarized along one of the principal axes of a
birefringent SWW, i.e. the scalar case, where the three
waves are copolarized in either TM or TE mode inside
a waveguide. The relationship between ωp, ωs and ωi is
2ωp = ωs + ωi. SFWM inside the SWW can be phe-
nomenologically described using the interaction Hamilto-
nian

HI = 4ϵ0χ
(3)

∫

dr⃗E(+)
p E(+)

p Ê(−)
s Ê(−)

i + h.c. ,

where pump pulse propagating along the waveguide re-
mains classical, and can be expressed as[8]

E(+)
p = A e−iγPpz

∫

dωp exp
[

−
(ωp − ωpc)2

2σ2
p

− iφ(ωp)
]

× e i(βpz−ωpt), (1)

where ωpc and σp are the central frequency and bandwidth
of the pump beam respectively. γ represents the nonlin-
ear coefficient of the SWW and Pp is the peak power.
φ(ωp) is the frequency-dependent spectral phase due to
the effects of chromatic dispersion and Kerr nonlinearity
when the pump propagates in the SWW. After the Tay-
lor expansion of φ(ωp) and omitting the high-order terms
φ(ωp) = φ0 +φ1(ωp−ωpc)+φ2(ωp−ωpc)2/2. The expres-
sion of the pump pulse can be simplified as

E(+)
p = A e−iγPpz

∫

dωp exp
[

−
(ωp − ωpc)2

2σ2
p

(1 + iCp)
]

e i(βpz−ωpt), (2)

where Cp = σ2
pφ2 is the linear chirp of the pump. The peak power and pulse duration of the chirp pulse can be expressed

as Pp ∝ A2ω2
p/

√

1 + C2
p and Tp = 2

√
ln 2

√

1 + C2
p/σp respectively. Cp = 0 corresponds to the fourier transformed

limited pulse, i.e. a broadband pulse should be short in time. In the low-gain regime, it is reasonable to quantize the
signal and idler fields, which are both at the single-photon level:

E(−)
j =

∫

dωj

√

!ωj

2ε0Vq

a(+)(ωj)

n(ωj)
e−i(βjz−ωjt), (3)

with j = s or i. a(+)(ωj) is the creation operator of the vacuum field at ωj . Hence the interaction Hamilton can be
written as

HI =
γPpL

√

1 + C2
p

σ2
p

∫

dωpdωsdωi exp[−i(2ωp − ωs − ωi)t] × exp
[

−
(ωs + ωi − 2ωpc)2

4σ2
p

(1 + iCp)
]

sinc
(∆kL

2

)

, (4)

where ∆k denotes the wave vector mismatch. It can be
expressed as

∆k = ∆kM + ∆kW + 2γPp . (5)

∆kM and ∆kW represent the mismatch occurring as a
result of material dispersion and waveguide dispersion
respectively. In the case of a single-mode waveguide,
∆kW = 0, since the change in the material index due
to waveguiding is nearly the same for all waves. The
third term is the nonlinear part resulting from the self-
phase modulation introduced by the pump wave. Here
we assume that the pump powers are low such that
self-phase modulation are negligible and thus the phase-
matching conditions do not depend on the power. More-

over, for photon-pair generation, the pump power should
be kept low enough that γPpL ≤ 0.2 to prevent stimulated
scattering.[11] As the signal and idler are located symmet-
rically around the pump frequency, the phase mismatch
due to material dispersion depends only on even-order
dispersion parameters.[13,21] Therefore ∆k = 2β(ωp) −
β(ωs)−β(ωi). Using the Taylor expansion of β(ωp), β(ωs)
and β(ωi) at the central frequency, respectively, we obtain

∆k = τs(ωs − ωs0)
2 + τi(ωi − ωi0)

2

+
β(2)

pc

2
(ωs − ωs0)(ωi − ωi0) , (6)

where τs(i) = β(2)
pc /4 − β(2)

s(i)0/2 and β(2)
j = d2β/dω2|ωj



No. 6 Communications in Theoretical Physics 737

(j = pc, s0, i0) is the second-order dispersion parame-
ter. The two-photon quantum state |Ψ⟩ at the output
of the nonlinear crystal can be expressed as |Ψ⟩ = |vac⟩ −
i/!

∫

dtHI(t)|vac⟩. The joint spectral amplitude evalu-
ated from first-order perturbation theory can be written
as

ψ(Ωs, Ωi) ∝ exp
[

−
Ω2

+(1 + iCp)

4σ2
p

]

sinc
[β(2)

pc LΩ2
−

8

]

, (7)

where Ω± = Ωs ± Ωi and Ωs(i) = ωs(i) − ωs0(i0).
The most developed approach to quantitative analysis

bipartite entanglement is based on using coherent modes
decomposition, i.e. Schmidt decomposition, |Ψ⟩AB =
∑

n

√
λn|φn⟩A|ϕn⟩B , where |φn⟩A, |ϕn⟩B are the Schmidt

modes defined by eigenvectors of the reduced density ma-
trices for the signal and idler photons, respectively, and√
λn are the corresponding eigenvalues, with λn represents

the probability of finding the entangled state in the n-th
entangled Schmidt mode |φn⟩A|ϕn⟩B. Once the Schmidt
coefficients are obtained, one can obtain K = 1/

∑

n λ
2
n,

which can be interpreted as a measure of the effective di-
mensionality of the system.

3 Spectral Properties of Correlated Photon
Pairs

We consider the strip waveguide structure fabricated
on an SOI wafer with a Si top layer on a 3 µm SiO2

layer. The SWW was 460-nm wide, 200-nm thick, which

is widely used in experiments.[14−16] We calculated the ef-
fective refractive index by using the finite-element method
(commercial software COMSOL simulation).[22] Figure 1
shows the effective index of refraction of the TM and TE
modes as a function of wavelength for the waveguide struc-
ture. The group index ng, defined as ng = β(1)c, of the
TM mode is shown in the inset of Fig. 1. ng can also be en-
gineered by controlling the configuration of the chip.[13,22]

Without loss of generality, we focus on the discussion of
TM mode in the following discussion. The second-order
dispersion parameter of TM mode at 1550 nm, which can
be differentiated numerically from β(1) using a spline-fit
procedure, is 0.21 ps2/cm.

Fig. 1 Plots of computed effective index of refraction
of TE00 and TM00 modes as a function of wavelength.
Inset, the group index of TM00 mode.

Fig. 2 The joint spectra for different pump bandwidths and waveguide lengths as a function of signal and idler detuning
frequency.

In Fig. 2, we plot the contour map of joint spectra for
different pump durations (Tp = 1 ps and 20 ps) and waveg-
uide lengths (L = 0.5 cm and 1 cm) as a function of signal
and idler detuning frequency with Cp = 0. It is clear that
the frequency correlation can be negatively or positively

correlated by detuning the waveguide lengths or the pump
pulse duration. A joint spectral amplitude with a circular
form implies a decorrelated state. One can achieve spec-
trally decorrelated joint spectral amplitude distributions
by a careful choice of the waveguide lengths and pump
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bandwidth. Although the phase-matching function is a
sinc function with significant amplitude far from the cen-
tral peak, the tails of the sinc function can be spectrally
filtered out by using an arrayed waveguide grating.

Fig. 3 The Schmidt number K, which quantifies the
degree of entanglement, changes with the parameter
√

β2
pcL/2σp for Cp = 0.

By the numerical tool for calculating the Schmidt de-
composition in systems with continuous degrees of free-
dom, the Schmidt numbers K are calculated and plot-
ted in Fig. 3. We note that the Schmidt numbers are

uniquely determined by the parameter
√

β(2)
pc L/2σp de-

spite the actual dimensions of L and ωp. The demarca-

tion point is
√

β(2)
pc L/2σp = 0.73 with K = 1.14, which

corresponds to minimally frequency entangled state. For
√

β(2)
pc L/2σp ≫ 0.73 (frequency positively correlated

states) or
√

β(2)
pc L/2σp ≪ 0.73 (frequency anti-correlated

states), high degree of frequency entanglement can be
achieved, which is more robust to the presence of noise
and other deleterious environmental effects.

4 Influence of Pump Chirp on the Two-
Photon State

The information pertaining to the linear chirp of the
pump in the two-photon state, as can be seen from Eq. (7),

is contained in the phase term. The sinc function that ap-
pears in Eq. (7) can be simplified by applying the Gaus-
sian approximation, which retains the main features of the
two-photon state.[23] We take sinc[bx2] ≈ exp[−αbx2] with
α = 0.725, so that both functions coincide at the 1/e2

intensity. In this case, the temporal description of the
two-photon state can be obtained as the two-dimensional
Fourier transform of ψ(Ωs, Ωi). The resulting expression
is as follows

ψ(ts, ti) ∝ exp[A(t2s + t2i ) + 2Btsti] , (8)

with

A =
−2Cp + i(2 + Lβ(2)

pc ασ2
p)

4(−i + Cp)Lβ
(2)
pc α

, (9)

B =
2Cp + i(−2 + Lβ(2)

pc ασ2
p)

4(−i + Cp)Lβ
(2)
pc α

. (10)

It is noted that the pump chirp has no effect on the JSI,
but can influence the joint temporal intensity (JTI) obvi-
ously. In Fig. 4, we show the influence of pump chirp,
presenting as an example the case of T = 0.5 ps and
L = 1 cm. In this case we found that the frequency of
a photon pair is positively correlated (see Fig. 4(a)), re-
sulting from that the bandwidth of the phase-matching
function is much narrower than that of the pump pulse.
Also, when depicting the temporal correlation for Cp = 0,
which corresponds to the Fourier transform of the pump
pulse function and phase-matching function respectively,
as shown in Eq. (8), we found that the bandwidth of
ts + ti is narrower than that of ts − ti, so the tempo-
ral correlation is anticorrelated. However, as can be seen
from Fig. 4(c), the temporal correlation is positively cor-
related for Cp = 6, representing the pump chirp makes the
two-photon wavepackets not Fourier transform-limited,
i.e., frequency-correlation does not necessarily imply time-
anticorrelation. The physical origin is that the phase term
due to pump chirp acts as an elongation of the JTI along
the direction given by ts + ti, resulting in the bandwidth
of ts + ti broader than that of ts − ti.

Fig. 4 Influence of chirp on the temporal properties of the two-photon state: (a) Contour map of joint spectral intensity;
(b) the corresponding contours of joint temporal intensity for Cp = 0; and (c) contours of joint temporal intensity for
Cp = 6.
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Fig. 5 The behavior of the Schmidt number as a func-
tion of the pump chirp parameter for three different val-

ues of
√

β(2)
pc Lσp.

To learn how the linear chirp of the pump influences
the frequency entanglement, we plot in Fig. 5 the Schmidt
number as a function of Cp for three different values of
√

β(2)
pc Lσp. It is evident that the Schmidt number in-

creases with increasingly larger values of Cp. The physical
origin is that the contribution of pump chirp to entan-
glement in the spectral domain is in the form of phase
entanglement.[23] As can be seen from Eq. (7), the phase
term associated with a chirped pump can not be fac-
tored into signal and idler factors, the ΩsΩi does exist
and always contribute to entanglement. Hence, the pump
chirp can be used as an effective tool to control the de-
gree of frequency entanglement in SWWs. The photon
source with high K is applicable for protocols using fre-
quency entanglement such as a multi-user entangled pho-
ton distribution.[24]

5 Influence of the Nonlinear Losses on the
Two-Photon State

In the presence of nonlinear losses, for example two-
photon absorption (TPA), the two-photon quantum state
can be derived iteratively using the standard Dyson’s per-
turbation expansion from quantum theory of scattering.[9]

Therefore the joint spectral amplitude can be written
as[25]

ψ(Ωs, Ωi) ∝ exp
[

−
Ω2

+

4σ2
p

] sinh[gL]

gL
, (11)

where g is the parametric gain term and can be defined as

g =

√

(φ

L

)2
−

(β(2)
pc Ω2

−

8
+
φ

L

)2
. (12)

φ is the nonlinear phase shift and can be expressed as[26]

φ =
k0n2

βTPA
ln[1 + βTPAI0Leff ] , (13)

where Leff = (1 − e−αl/αl) is the effective length for a
waveguide of length L in the presence of propagation loss
αl, k0 = 2π/λ, n2 is the Kerr coefficient, βTPA is the
TPA coefficient, I0 accounts for the input peak inten-
sity. We neglect both the effects of free-carrier absorp-
tion and free-carrier dispersion in the limit of the peak

intensity of the pump pulse is not too high. It is reason-
able when the input peak intensity I0 satisfies the condi-
tion I ≪ 3hν0/(σTp), where σ = 1.45 × 10−21 m2 is the
free-carrier absorption cross section for λ = 1.55 µm.[24]

For example, I0 ≪ 27 GW/cm2 for Tp = 1 ps. At the
1.55 µm wavelength, n2 ≈ 6 × 10−18 m2/W, βTPA ≈
5× 10−12 m/W. In this case, we focus on the SOI waveg-
uide with αl = 1 dB/cm.

Fig. 6 Influence of input peak intensity on the spectral
properties of the two-photon state with the pulse width
Tp = 10 ps, waveguide length L = 0.5 cm.

Fig. 7 Schmidt number is given as a function of I0 when
Tp = 10 ps for two different waveguide lengths.

In Figs. 6(a) and 6(b), by choosing the pump peak
intensity I0 (I0 = 0.5 GW/cm2 for Fig. 6(a), I0 =
1 GW/cm2 for Fig. 6(b)), namely the nonlinear phase
shift, we find that I0 can brings different characters to the
spectral correlation. In Fig. 7, by evaluating the Schmidt
number as a function of I0 for two different waveguide
lengths, we find the Schmidt number always decreases as
I0 enlarging. Meanwhile, the nonlinear losses also impose
an intrinsic limit on heralded single photon sources.[25]

6 Conclusion
In conclusion, we have analyzed the spectral proper-

ties of photon pairs generated in telecom C-band inside
a dispersion-engineered SWW with well-defined guided
modes. The joint spectral shape of the produced two-
photon state is presented, which depends mainly on the
waveguide length, pump duration, two relatively easy
experimental parameters to control. The parameter
√

β(2)
pc Lσp uniquely determines the wavefunction, spectral

correlation and the Schmidt number of such single modes
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photon pairs. Additionally, we find that pump chirp which
is due to the effect of chromatic dispersion and Kerr non-
linearity in a dispersive waveguide can constitute an effec-
tive tool for the control of the degree of frequency entan-
glement. For the pump peak intensity is not too high, the
induced nonlinear losses of the waveguide can also influ-

ence the biphoton spectral features obviously and impose
an intrinsic limit on the achievement of high degree of
frequency entanglement. In view of the results obtained
here, it could be possible to devise SWWs that turn out
to be beneficial for applications in the area of chip-scale
quantum information processing.
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