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In this paper, a new quantum random number generation scheme which is implemented by

measuring quantum noise of the squeezed vacuum state is proposed. In the proposed scheme,

the Shannon entropy is employed to measure randomness of the generated random numbers. In

addition, some characteristics of the generated random numbers are investigated. To reach

the pure quantum randomness, an extraction approach based on universal hash functions for

the generated quantum random numbers is presented. Results show that the proposed scheme

based on squeezed vacuum state has remarkable advantages over the one associated with the

vacuum state.
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1. Introduction

Random numbers are important in many science and technology fields, such as

secure communications,1 Monte Carlo simulations,2 cryptography3 and authenti-

cation.4 One recent example is the well-known quantum key distribution (QKD),5 in

which random numbers are essential for both quantum state preparation and

eavesdropping detection. Unfortunately, the widely used random numbers gener-

ated by computational algorithms or arithmetical methods are totally pseudoran-

dom. Although these pseudorandom numbers are widely used and play important

roles in practices, their intrinsic demerits, i.e. the pseudo randomness, has cata-

strophic impacts on some applications which require true randomness. More

importantly, truly random numbers are also essential in verifying some fundamental

principles of physics.6,7 Recent years, the quest for true randomness in all these

applications has motivated much attentions on physical principles and technique
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implementations of the quantum random number generation (QRNG) based on the

Heisenberg Uncertainty Principle of quantum mechanics.

An original way to realize quantum random numbers generator is associated with

single photons passing through a beam splitter.4,8�11 Some of these generators have

been developed into plug and play devices that are available for commercial uses.

Another promising way to obtain quantum random numbers is to measure photon

numbers in weak laser pulses.12,13 Generally, the photon-number distribution of

weak laser pulses is Poissonian,14�17 thus the parity of the observed photon numbers

can be employed to generate random bits.12 Besides, the characteristic of random

appearance of photons in a pulse has also be used to generate random bits.13 Another

method to generate random numbers is to measure the quantum phase noise of a

single mode semiconductor laser.18,19 A significant advantage of this scheme is the

potential high random number generation rate. In Ref. 19, a 500Mbit/s quantum

random number generator can be achieved with commercial off-the-shelf com-

ponents. Apart from its high random number generation rate, the quantum ran-

domness is also guaranteed: a photon generated by spontaneous emission has a

random phase, which contributes a small random phase fluctuation to the total

electric field.20 Especially, QRNG employing the shot noise of vacuum state21,22 has

been presented. The shot noise of vacuum state is a kind of quantum noise and is

thus totally random. The verifiably unique randomness, combined with its simpli-

city of the setup, are important attributes for obtaining high-reliability, high-speed

and low cost quantum random number generators.

In this paper, a new QRNG scheme which produces quantum random numbers

by excavating the quantum uncertainty of quadrature amplitudes of the squeezed

vacuum state is presented. By measuring one quadrature, the quantum noise in the

squeezed vacuum state is exploited to produce higher speed random number gen-

erator. Technically, two homodyne detectors are employed to measure the quantum

noise of the squeezed vacuum state. The measuring results from the homodyne

detectors are processed by an optimized bit conversion method to produce unbiased

random numbers.

The remainder of this article is arranged as follows. A physical model for the

proposed scheme is described in Sec. 2. Then, characteristics of the generated ran-

dom numbers are investigated in Sec. 3. After that we present an extraction

approach for quantum randomness in Sec. 4. Finally, conclusions are drawn in

Sec. 5.

2. Model for QRNG Using Squeezed Vacuum State

The squeezed vacuum state can be described using the following Wigner function23

Wsqðx; pÞ ¼
1

�
expð�sx2 � s�1p2Þ; ð1Þ

where s is the squeezing parameter, x and p are observers of the X and P quad-

ratures, respectively. In the squeezed vacuum state, when the vacuum noise for one
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quadrature is squeezed, it is anti-squeezed, i.e. amplified, for another quadrature.

For example, when X quadrature is amplified then the P quadrature is squeezed,

and vice versa. This property has also been demonstrated in Eq. (1). The proposed

scheme assumes that the P quadrature is squeezed while the X quadrature is

amplified. The amplified quantum noise for the X quadrature is used to generate

random numbers. Since the Wigner function is a quasi-probability distribution,23

the Gaussian probability function for x is given by

j sqðxÞj2 ¼
Z þ1

�1
Wsqðx; pÞdp ¼

ffiffiffi
s

p
ffiffiffi
�

p expð�sx2Þ; ð2Þ

where  sqðxÞ is the wave function of squeezed vacuum state in the X representation.

Obviously, when one uses homodyne detection to measure the X quadrature of

squeezed vacuum state, the measurement results forms a random variable � which

satisfies a Gaussian distribution. Making use of the obtained random variable � one

may generate a random numbers string. The approaches for generating random

numbers � will be described in the next section.

It is known that the Shannon entropy can be viewed as a measurement of ran-

domness or unpredictability of a random variable �.24 In addition, a larger entropy

implies a more optimal randomness for the random variable �. In the squeezing

vacuum state, the entropy of x is

HsqðXÞ ¼ �
Z þ1

�1
j sqðxÞj2 log j sqðxÞj2dx ¼ 1

2
log

�

s
þ 1

2 ln 2
: ð3Þ

Consider that the P quadrature is squeezed and the X quadrature is amplified, the

squeezing parameter s should meet the following condition, i.e.

0 < s < 1: ð4Þ
Clearly, entropy of the squeezed vacuum state is larger than that of the vacuum

state in which s ¼ 1. This means that the squeezed vacuum state has greater ran-

domness than the schemes presented in Refs. 21 and 22 where vacuum state is

employed. In addition, Eq. (3) demonstrates that a smaller squeezing factor will give

a better quantum random numbers string. This characteristic will be described in

detail in the next section.

According to the QRNG scheme proposed above, a schematic setup of the pro-

posed scheme is shown in Fig. 1. A local oscillator (LO) is generated by a continuous-

wave fiber laser source. The squeezed vacuum state can be generated by applying the

unitary squeeze operator on vacuum state,25,26 the unitary squeeze operator can be

described by Eq. (5)

SðsÞ ¼ exp
1

2
sâ2 � 1

2
sâþ2

� �
; ð5Þ

where s is the squeezing factor, which depends on nonlinear susceptibility of non-

linear optical crystal such as KTP, and amplitude of pump beam. A diagram of the
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squeezed vacuum state is shown in Fig. 2. The LO interferes with the signal from the

squeezed vacuum state in the BS and then two outputs are measured with two

intensity detectors with carefully balanced amplifications, and the resulting elec-

trical currents are digitized, subtracted and stored. After the subtracting operation,

the LO’s impacts on the electrical currents are removed, so the difference current is

proportional to the quadrature amplitudes of the squeezed vacuum state. Conse-

quently, measurement outputs are obtained from the system. To improve the ran-

dom number generation rate remarkably, the obtained measurement outputs are

divided into many bins. Each bin is encoded into n bits with n > 1 by making use of

an encoding algorithm. There are probably some unavoidable bias in the raw bits. In

order to remove these biases, a simple unbiasing method is employed. The encoding

Fig. 2. Schematic setup of squeezed vacuum state. SHG: second harmonic generator, OPO: optical

parametric oscillator, PPKTP: pericdically poled KTiOPO4 crystal, PD: photo detector, ATT: electrical

attenuator, Servo: servo amplifier circuit for feed-back system, PZTs: piezoelectric transducers,�: mixing

circuit (multiplier).

Fig. 1. Schematic setup for QRNG based on squeezed vacuum state by using the homodyne detection.

The setup consists of a laser source generating a local oscillator (LO), a beamsplitter (BS) and two

balanced detectors. After the subtracting operation the data is processed using encoding and unbiasing

algorithms to generate unbiased random numbers.
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for n and unbiasing approaches will be described in detail in the next section. After

these operations, unbiased random numbers can be obtained from the stored results

processed by the encoding and unbiasing algorithms in the data processing stage.

A remarkable feature of the proposed QRNG scheme should be noted, that the

generated random-number string is independent of the LO signal source since this

signal will be removed in the balanced homodyne measurement. Therefore, noise

carried by the LO signal may be ignored in principle.

3. Characteristics of Generated Random Numbers

The randomness and the generation rate of the random-number string are very

important characteristics for an obtained random-number string in practice. In this

section we investigate the unbiasing property and influences of the parameters n and

the squeezing factor s on the generated quantum random-number string.

Clearly, measurement outcomes are associated with the quantum noise and

classic noise. Let j ðxÞj2 be the probability distribution of the measurement out-

comes, then one obtains

j ðxÞj2 ¼ j sqðxÞj2 þ j cðxÞj2; ð6Þ
where j sqðxÞj2 and j cðxÞj2 are the probability distributions of the amplitudes

originated from quantum noise and classic noise, respectively. Without loss of

generality, we assume that both quantum noise and classic noise follows the

Gaussian distributions in the proposed scheme. This way has also been adopted in

Refs. 21 and 22.

3.1. Bias removal22

Unbiasedness is an important characteristic of the generated random numbers. This

characteristic will influence the randomness of the random numbers. Generally, an

arbitrated bit in a true random numbers string must be unbiased.

To obtain unbiased random numbers from measuring outputs of homodyne

detectors, we divide the measurement outcomes into bins so that the integrated

probabilities of the measurement outcomes to be found in each bin are equal, i.e.

p1 ¼ � � � ¼ pi ¼ � � � ¼ plþ1; i ¼ 2; 3; . . . ; l ð7Þ
where

p1 ¼
Z x1

�1
j ðxÞj2dx;

pi ¼
Z xi

xi�1

j ðxÞj2dx; i ¼ 2; 3; . . . ; l;

plþ1 ¼
Z þ1

xl

j ðxÞj2dx;

8>>>>>>>><
>>>>>>>>:

ð8Þ
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lþ 1 is the number of bins, and pi is the probability of finding a measurement

outcome in ith bin of the probability distribution of the measurement outcomes.

Each bin is assigned a bit sequence with fixed length n to represent the measurement

outputs from the homodyne detectors. Since the probability of each bin is equal,

the probability of each fixed bit sequence assigned to each bin is also equal as a

result. Consequently, the probability of bit \1" and bit \0" is equal. Accordingly,

the generated random numbers is unbiased.

Since the Wigner function is given in Eq. (2), to ensure Eq. (7) be satisfied, two

parameters, i.e. the bin positions xi with i ¼ 1; 2; . . . ; l and the bin number lþ 1,

should be obtained. Firstly, we consider how to calculate the appropriate bin pos-

itions xi. The number of bins depends on length of the bit sequence n,

lþ 1 ¼ 2n; ð9Þ
where n is the length of the bit sequence for each sample output. Making use of

Eqs. (7) and (9) yields,

pi ¼
1

2n
; i ¼ 1; 2; . . . ; l; ð10Þ

since Z xi

�1
j ðxÞj2dx ¼

Z xi

xi�1

j ðxÞj2dxþ
Z xi�1

xi�2

j ðxÞj2dx

þ � � � þ
Z x1

�1
j ðxÞj2dx

¼ pi þ pi�1 þ � � � þ p1 ¼
i

2n
; ð11Þ

with i ¼ 1; 2; . . . ; l, Eq. (8) can be written in a uniform way as following,

i

2n
¼

Z xi

�1
j ðxÞj2dx: ð12Þ

Thus, the positions xi can be calculated out using Eq. (12) for a fixed n.

Figure 2 is a binning example for n ¼ 3 and lþ 1 ¼ 2n ¼ 8. Since n is associated

with the Shannon entropy, a detail description on this parameter will be presented

in next section.

3.2. Optimal bit sequence length n

As described above, proper bin number lþ 1 and l bin positions xi may lead an

unbiased random numbers string. In applications, the generation rate of random

numbers string is also an important parameter. In the proposed scheme, the gen-

eration rate is associated with length of the bit sequence n for each sample output.

Consequently, the bit sequence n is very important in the proposed QRNG scheme.

In the following the influence of n on the generation rate and the data processing is

discussed in detail, and a method for choosing an appropriate n is proposed.
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LetHtðXÞ be the total Shannon entropy of the bit sequences. Generally, the total

entropy HtðXÞ contains both the entropy HqðXÞ originated from the quantum noise

and the entropyHcðXÞ from the classical noises, such as the electronic noise and LO

noise due to imperfect balancing. Then the entropy of the quantum noise can be

calculated by

HqðXÞ ¼ HtðXÞ �HcðXÞ; ð13Þ

with

HtðXÞ ¼ �
Xlþ1

i¼1

pi log2pi; ð14Þ

where pi is defined in Eq. (10). For convenience, HqðXÞ is called as quantum noise

entropy in the follows. One may easily obtain HtðXÞ ¼ n. While the entropy of the

classic noise can be obtained in a similar way. Let p 0
i be the probability for each

measurement outputs of the classic noise in each bin. Then, the entropy of the classic

noise can be easily calculated out using the following way,

HcðXÞ ¼ �
Xlþ1

i¼1

p 0
ilog2p

0
i; ð15Þ

where

p 0
i ¼

Z xi

�1
j cðxÞj2dx�

Z xi�1

�1
j cðxÞj2dx; ð16Þ

with i ¼ 1; 2; . . . ; l and xi given by Eq. (12). Combining Eqs. (13), (14) and (15) gives

HqðXÞ ¼ nþ
X2n

i¼1

p 0
ilog2p

0
i: ð17Þ

Clearly, HqðXÞ is a function of n. Accordingly, we have a formal expression as fol-

lowing,

HqðXÞ ¼ fðnÞ: ð18Þ
Generally, one may get the relationship between the quantum noise entropy and the

bit sequence length n. However, the theoretically expression is difficult to obtain from

the above equation for the reason that the xi cannot be theoretically calculated out

from Eq. (12) since
Rxi

�1 j ðxÞj2dx is a complementary error function. Therefore a

numerical simulation way is presented in the following. The aim is to propose an

available encoding algorithm for how to choose an optimal bit sequence length n.

Now we move to design an encoding algorithm for choosing an optimal bit

sequence n. Equation (17) suggests that the quantum noise entropy HqðXÞ is

associated with the bit sequence length n. Suppose that the optimal bit sequence is
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no, then Eq. (18) gives Ĥ qðXÞ ¼ fðnoÞ, where Ĥ qðXÞ is the quantum noise entropy

which corresponds to the optimal bit sequence length n. Consider that the bit

sequence length n is determined by the encoding algorithm, to obtain finally a high

speed random-number string an optimal encoding algorithm which gives appro-

priate bit sequence length, i.e. the optimal no should be employed in the data

processing phase. Clearly, if the chosen n is too small, i.e. n < no, the used quantum

noise entropy HqðXÞ is smaller than the actually quantum noise entropy Ĥ qðXÞ
provided by the system. Consequently, the quantum noise is not employed com-

pletely and some of are wasted. However, if n is too big, i.e. n > no, the complexity

of the encoding algorithm will immensely increase since a larger n can only generate

an entropy Ĥ qðXÞ while the generated bits string in the data processing phase will

become much larger. While the additional bits �n ¼ n� no are not useful. There-

fore, a proper n is very important in the proposed system.

For clarity, an example is presented using numerical simulation. In the simu-

lation the mean of the signal (i.e. quantum noise) and classic noise are both 0 and the

SNR is 25dB,22 and a squeezing vacuum state with the squeezing parameter s ¼
1=10 is adopted. According to Eq. (17), the simulation results are depicted in Fig. 3.

Dependencies of the total entropy and the classic noise entropy on the bit sequence n

are plotted in Fig. 4(a) and the entropy of the signal, i.e. the quantum noise, is

demonstrated in Fig. 4(b). Figure 4 shows that there is a knee point in the quantum

noise entropy. After the knee point, the quantum noise entropy becomes almost a

constant, and the total increased entropy almost comes from the contribution of

classic noise. This means that a larger n is not useful to employ the quantum noise

entropy HqðXÞ after the knee point. Thus, we only need to choose the smallest n

after the knee point as the length of the bit sequence for each measurement outcome

bin. In this situation, almost all the entropy originated from quantum noise has been

exploited to generate the true random numbers, while the complexity of the data

processing is minimized. From Fig. 4, one may easy obtain the most proper value of

n is n ¼ 6, the corresponding quantum noise entropy obtained from the system is

Fig. 3. The binning of the probability distribution of the sample measurement outcomes for n ¼ 3. The

random numbers are then produced by assigning a fixed bit sequence of length n to each sample output in

a certain bin.
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4:26 bits. While the number of binnings is lþ 1 ¼ 2n ¼ 64 as a result. In addition,

the classic noise entropy is 1:74 bits which should be removed. Clearly, not only

most of the entropy originated from quantum noise has been exploited to generate

random numbers, but also the increasing complexity of the data processing for an

unnecessary larger n is avoided.

3.3. Influences of squeezing parameter s

Equations (2) and (3) show that both the probability distribution function j sqðxÞj2
and the quantum noise entropy HqðXÞ depend on the squeezing parameter s. Thus,

the encoding algorithm is associated with this parameter. Consequently, the gen-

eration rate of the final random-number string depends on the squeezing parameter s

of the squeezing vacuum state. In this subsection we investigate the influence of the

squeezing parameter s on the generated random-number string.

In the proposed QRNG scheme, the squeezing parameter s should satisfy Eq. (4).

In this scenario, the quantum noise in the P quadrature is transferred to be the

quantum noise in the X quadrature, which is the measuring object of our system. So

the quantum noise can be fully used to generate true random numbers. Conse-

quently, when the quantum noise of the system is measured, the quantum noise

entropy that one may obtain in squeezed vacuum state is more than that in common

vacuum state. This is just a comparison between QRNG based on squeezed vacuum

state in which s satisfies Eq. (4) and QRNG based on vacuum state in which s ¼ 1.

To clearly show the influence of the squeezing parameter s on the proposed system,

the relationship between the quantum noise entropy and the squeezing parameter s

is depicted in Fig. 5. It demonstrates that the quantum noise entropy decreases with

increasing of the squeezing parameter s. Consequently, the random number gener-

ation rate decreases with the increasing of squeezing parameter s.
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Fig. 4. Total entropy, classic noise entropy and quantum entropy for different binnings when s ¼ 1=10.

(a) The total entropy and the entropy of the classic noise for different binnings (different number of bits

n per sample). (b) Quantum noise entropy achieved for different binnings (different number of bits

n per sample).
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In order to clearly show the influence of s on the random-number string,

especially the generation rate, the total entropy, classic noise entropy and the

quantum noise entropy obtained from the system with different squeezing parameter

s are depicted in Fig. 6. From Fig. 6, we also find that the quantum noise entropy is

closely related to the squeezing parameter s. That is, more quantum noise entropy

can be obtained from the system with a smaller s. For example, when s ¼ 1;

1=2; 1=5; 1=10, the obtained quantum noise entropies are 2:61 bits; 3:10 bits;

3:76 bits; 4:26 bits, respectively, and the corresponding optimal bit sequence lengths

n are 4, 5, 6 and 6, respectively. We note in Fig. 6 that a smaller squeezing
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total entropy and the entropy of the classic noise for different squeezing parameter s and different binnings

(different number of bits n per sample). (b) Quantum noise entropy achieved for different binnings
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parameter s will benefit the generated quantum random number string, e.g. the

generation rate. Of course, when s becomes smaller the experimental implemen-

tation becomes more difficult. In addition, Fig. 6 demonstrates that a very small s

can only play a slight role on the bit sequence lengths n. For example, above cal-

culations have shown that the optimal bit sequence lengths n are 6 and about 6 when

s ¼ 1=5 and 1=10, respectively. Thus we suggest to choose a proper squeezing par-

ameter s in the experiment. From the numerical simulation, we note that 2.61 bits

quantum noise entropy can be obtained from the system with parameter s ¼ 1 (this

is the vacuum state), while from the system with squeezing parameter s ¼ 1=10,

4.26 bits quantum noise entropy can be obtained. In Ref. 22, the random number

generation rate is 6.5Mbps using vacuum state, hence, a random number generation

rate of 4:26
2:61 � 6:5 ¼ 10:6Mbps is achievable from the proposed system with squeezing

parameter s ¼ 1=10.

4. Quantum Randomness Extraction

As mentioned in the introduction, the generated true random number can be applied

in many fields. In this paper, our main aim is in the well-known quantum key

distribution. In this case, the security of the generated random is an important issue.

Surely, if all bits in the generated string come from pure quantum effects, i.e. the

squeezing vacuum state, the attacker cannot obtain any useful information. How-

ever, classic noises such as the electric noises are inevitable in the proposed system.

Since all classical noise could in principle be known by an adversary or an adversary

may be able to control at least some of these sources of classic noise, the contribution

from the classic noise should be removed. Otherwise, the generated quantum ran-

dom-number string might be insecure.

Actually, the classic noise entropy HcðXÞ has been removed, in principle, in the

encoding algorithm for bit sequence n. This has been described in detail in Sec. 3.2. To

further remove the classic correlation which may be revealed slight partial infor-

mation to the adversary, one may employ the quantum randomness extraction

techniques. The quantum randomness extraction may be implemented using a

quantum randomness extractor. Assume that a bit sequence X1; . . . ;Xn is the input

of the extractor, the extractor considers successive pairs X2i,X2iþ1. For each pair, if

X2i 6¼ X2iþ1 thenX2i is sent to the output, otherwise nothing is sent. Another mostly

used method is the hashing function, which is called the entropy smoothing22 by

hashing. Because the amount of quantum-mechanical entropy contained in the raw

data is known, a suitably chosen one-way function can be applied to project these

data onto a shorter set for which the length is determined by this amount of entropy.

A simple and efficient randomness extractor based on complexity theory27 is proved

that it works for all sources of sufficiently high-entropy, even if individual bits in the

source are correlated. The following is the model of such a random extractor. Firstly,

choose a string s 2 f0; 1g‘þm�1 at random, and then calculate out them bits, with the

ith bit decided by � ‘
j¼0ðxi � siþjÞ, where ‘ is the length (in bits) of each sample from
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the high-entropy source, m is the length (in bits) of the output of the randomness

extractor, and x is the raw random bits generated from the high-entropy source.

All these approaches may be applied in the proposed scheme. But here we would

like to employ the privacy amplification technique to distill a private random-

number string. The privacy amplification is an important ingredient in the quantum

key distribution procedures. Then, the security analysis of the generated random

numbers can be processed in a unified way with the involved quantum key distri-

bution system. In this situation, the key technique relies on choice of universal hash

function. An intuitive way is to use the XOR operation as the randomness extractor

which has been applied in the one-time pad, quantum key distribution, and

the other random-number generation approaches. Here would like to adopt the

following way. Let A ¼ GF ð2 lÞ and B ¼ f0; 1gk. Define hcðxÞ as the first k bits of

the product cx in a polynomial representation of GF ð2 lÞ. It has been proven that the

set H A!B ¼ fhc : c 2 GF ð2 lÞg is a universal class of hash functions. Therefore we

may use this universal class of hash functions to remove the slight partial infor-

mation obtained by the attacker. Let x be the input bits which has been obtained in

the data processing procedure in the proposed system, then the output hcðxÞ is the
final bit string.

With the help of such a randomness extractor, the classic correlation has been

removed completely so that only the quantum noise plays role for the final random-

number generation. The security is guaranteed even if an adversary has some influ-

ences on the source. Actually, the final random-number string has the same security as

the BB84 QKD scheme since universal class of hash functions have been employed.

The analysis approach is the same as that in the privacy amplification procedures of

the QKD scheme. Since the privacy amplification technique has been investigated

widely, we here do not describe it again. In application, when the generated random-

number string is employed to a secure communication, the attacker cannot get any

available information.

5. Conclusions

A new quantum random number generation scheme which employs the quantum

properties of the squeezed vacuum state is proposed in this paper. To generate

unbias and high speed quantum random-number string, an unbiasing approach and

an encoding algorithm for choosing the bit sequence length are presented based on

the information theory. In addition, the influence of the squeezing parameter on the

generated random-number string is also investigated, we find that the smaller s will

benefit the proposed system. To remove the classic correlation so that the generated

random-number string is secure, the randomness extractor based on universal class

of hash functions is suggested for the proposed quantum random number generation

scheme. Results demonstrate that the proposed scheme may obtain higher speed

random-number string than the scheme based on vacuum state, and the final ran-

dom-number string has the same security as the QKD scheme.

Y. Zhu, G. He & G. Zeng
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